Mohammad J.Ziedan1, Abdulkareem F. Hassan2, Najim A. Saad3, and Ahmed Al-Mukhtar4,5This email address is being protected from spambots. You need JavaScript enabled to view it.

1Mechanical Engineering Dept. College of Engineering, Basrah University, Basrah, Iraq

2Engineering College, Almaaqal University, Basrah, Iraq

3Faculty of Materials Engineering, Babylon University, Babylon, Iraq

4Insistute of Structural Mechanics, Weimar University, Weimar, Germany

5College of Engineering, Al-Hussain University College, Iraq


 

 

Received: January 10, 2025
Accepted: March 19, 2025
Publication Date: April 24, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202512_28(12).0018  


Deep drawing of high-density polyethylene (HDPE) reinforced with woven carbon fibers (WCFs) demonstrates excellent resilience under stress, making it a promising material for applications demanding high strength and durability. This study investigated the influence of forming parameters, including temperature, forming depth, and punch velocity, on the deep drawability of HDPE-WCF composites. A dedicated experimental rig was designed and constructed for this purpose. Results indicate that increasing the forming temperature enhances the material’s flexibility, thereby reducing the required forming force. However, careful temperature control is crucial to prevent melting and potential degradation of material properties. The optimal forming temperature range was determined to be between 80C and 90C, significantly improving material formability. Conversely, at temperatures below 80C, increasing the forming depth and velocity can increase the risk of material tearing and significantly elevate the required forming force.

 


Keywords: Composites; Carbon Fiber; Forming Force; Forming Temperature; Deep Drawing.


  1. [1] E. K. Njim, F. A. Hadi, M. N. Hamzah, N. A. Alhilo, and M. H.Al-Maamori, (2024) “Numerical and Experimental Investigation of Nano zinc Oxide’s Effect on the Mechanical Properties of Chloroprene and Natural Rubber (CR/NR)Composites"Physics and Chemistry of Solid State 25(1): 14–25. DOI: 10.15330/pcss.25.1.14-25.
  2. [2] A.Al-Mukhtar, (2020) “Aircraft fuselage cracking and simulation" Procedia Structural Integrity 28: 124–131. DOI: 10.1016/j.prostr.2020.10.016.
  3. [3] H.K.Talla, A. K. F. Hassan, and J. K. Oleiwi, (2022) “Study the effect of reinforcing kevlar fibers with carbon f ibers and glass fibers on the performance of the athletic prosthetic foot" Basrah J Eng Sci 22: 41–48. DOI: 10.33971/bjes.22.2.7.
  4. [4] O.A.Abdullah and A. K. F. Hassan, (2016) “Effect of prestress level on the strength of CFRP composite laminate" Journal of Mechanical Science and Technology 30: 5115–5123. DOI: 10.1007/s12206-016-1029-1.
  5. [5] Y. Guo, D. Liu, Y. Chen, T. Zhang, and S. Zhu, (2019) “Preparation and properties of carbon-fiber-and pine-cone fiber-reinforced high-density polyethylene composites" Journal of Applied Polymer Science 136(14): 47304. DOI: 10.1002/app.47304.
  6. [6] X.Zhao,Z.Gui,X.Chen,W.Zhang,P.Yang,J. Zheng, and A. Liu, (2021) “Finite element analysis and exper iment study on the elastic properties of randomly and controllably distributed carbon fiber-reinforced hydroxyap atite composites" Ceramics International 47(9): 12613 12622. DOI: 10.1016/j.ceramint.2021.01.120.
  7. [7] C.Hu,X.Liao, Q.-H. Qin, and G. Wang, (2019) “The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers" Composites Part A: Applied Science and Manufacturing 121: 149–156. DOI: 10.1016/j.compositesa.2019.03.027.
  8. [8] M. J. Ziedan, A. F. Hassan, N. A. Saad, and A. Al Mukhtar, (2024) “A Comprehensive Review of Forming Methods for Composite Materials and Cracking" Proce dia Structural Integrity 66: 229–246. DOI: 10.1016/j.prostr.2024.11.074.
  9. [9] W. K. Jawad and A. Jaafar, (2018) “The influence of punch profile radius on deep drawing process in case of a low carbon steel cylindrical cup" Engineering and Tech nology Journal 36(10A): 1048–1058. DOI: 10.30684/etj.36.10A.5.
  10. [10] Q.Zhang, J. Cai, and Q. Gao, (2014) “Simulation and experimental study on thermal deep drawing of carbon f iber woven composites" Journal of Materials Process ing Technology 214(4): 802–810. DOI: 10.1016/j.jmatprotec.2013.11.024.
  11. [11] T. Naik and Z. Hu. “Computer Simulation of Deep Drawing Process for a Laminated Composite Cup”. In: ASME International Mechanical Engineering Congress and Exposition. 42975. 2007, 567–572. DOI: 10.1115/IMECE2007-41593.
  12. [12] A.WifiandA.Mosallam,(2007)“Someaspectsofblank holder force schemes in deep drawing process" Journal of Achievements in Materials and Manufacturing Engineering 24(1): 315–323.
  13. [13] F. Qayyum, M. Shah, A. Muqeet, and J. Afzal. “The effect of anisotropy on the intermediate and final form in deep drawing of SS304L, with high draw ratios: Experimentation and numerical simulation”. In: IOP Conference Series: Materials Science and Engineering. 146. 1. IOP Publishing. 2016, 012031. DOI: 10.1088/1757-899X/146/1/012031.
  14. [14] R.K.SaxenaandP.Dixit,(2009)“Finite element simulation of earing defect in deep drawing" The International Journal of Advanced Manufacturing Technology 45: 219–233. DOI: 10.1007/s00170-009-1963-5.
  15. [15] A. Rajabi, M. Kadkhodayan, M. Manoochehri, and R. Farjadfar, (2015) “Deep-drawing of thermoplastic metal composite structures: Experimental investigations, statis tical analyses and finite element modeling" Journal of Materials Processing Technology 215: 159–170. DOI: 10.1016/j.jmatprotec.2014.08.012.
  16. [16] A.P.Anaraki,M.Shahabizadeh,andB.Babaee,(2012) “Finite element simulation of multi-stage deep drawing pro cesses & comparison with experimental results" World Academy of Science, Engineering and Technology 61: 670–674.
  17. [17] C. Sguazzo, M. Harhash, M. Grafenhorst, H. Palkowski, and S. Hartmann, (2014) “Deep drawing of a layered composite: material characterization and finite element simulation" PAMM 14(1): 245–246. DOI: 10.1002/pamm.201410110.
  18. [18] E. K. Njim, H. R. Hasan, M. J. Jweeg, M. Al-Waily, A. A. Hameed, A. M. Youssef, and F. M. Elsayed, (2024) “Mechanical properties of sandwiched construction with composite and hybrid core structure" Advances in Polymer Technology 2024(1): 3803199. DOI: 10.1155/ 2024/3803199.
  19. [19] B. Muralidhara, S. K. Babu, and B. Suresha, (2020) “Theeffect of fiber architecture on the mechanical properties of carbon/epoxy composites" Materials Today: Proceedings 22: 1755–1764. DOI: 10.1016/j.matpr.2020.03.008.
  20. [20] A. Elduque, D. Elduque, C. Javierre, Á. Fernández, and J. Santolaria, (2015) “Environmental impact analysis of the injection molding process: analysis of the pro cessing of high-density polyethylene parts" Journal of Cleaner Production 108: 80–89. DOI: 10.1016/j.jclepro.2015.07.119.
  21. [21] A. K. F. Hassan and A. S. Hashim, (2015) “Three dimensional finite element analysis of wire drawing process" Universal Journal of Mechanical Engineering 3(3): 71–82. DOI: 10.13189/ujme.2015.030302.
  22. [22] J. Fan, C. Y. Tang, C. P. Tsui, L. C. Chan, and T. Lee, (2006) “3D finite element simulation of deep drawing with damage development" International Journal of Machine Tools and Manufacture 46(9): 1035–1044. DOI: 10.1016/j.ijmachtools.2005.07.044.
  23. [23] C. P. Singh and G. Agnihotri, (2015) “Study of deep drawing process parameters: a review" International Journal of Scientific and Research Publications 5(2): 1–15.
  24. [24] A. Al-Mukhtar12, (2012) “The Effected Parameters For Designing The Single Layer Composite Materials" International Journal of Mechanical Engineering and Robotics Research: DOI: 10.18178/ijmerr.