REFERENCES
- [1] Schrady, D. A., “A Deterministic Inventory Model for Repairable Item,” Naval Research Logistics Quarterly, Vol. 14, pp. 391398 (1967). doi: 10.1002/nav.38001 40310
- [2] Nahmias, N. and Rivera, H., “A Deterministic Model for a Repairable Item Inventory System with a Finite Repair Rate,” International Journal of Production Research, Vol. 17, No. 3, pp. 215221 (1979). doi: 10. 1080/00207547908919609
- [3] Mabini, M. C., Pintelon, L. M. and Gelders, L. F., “EOQ Type Formulation for Controlling Repairable Inventories,” International Journal of Production Economics, Vol. 28, pp. 2133 (1992). doi: 10.1016/0925-5273(92) 90110-S
- [4] Inderfurth, K., de Kok, A. G. and Flapper, S. D. P., “Product Recovery in Stochastic Remanufacturing Systems with Multiple Reuse Options,” European Journal of Operational Research, Vol. 133, pp. 130152 (2001). doi: 10.1016/S0377-2217(00)00188-0
- [5] Teunter, R. H., “Economic Ordering Quantities for Recoverable Item Inventory Systems,” Naval Research Logistics, Vol. 48, pp. 484495 (2001). doi: 10.1002/ nav.1030
- [6] Koh, S. G., Hwang, H., Sohn, K. I. and Ko, C. S., “An Optimal Ordering and Recovery Policy for Reusable Items,” Computers & Industrial Engineering, Vol. 43, pp. 5973 (2002). doi: 10.1016/S0360-8352(02)000 62-1
- [7] Teunter, R. H. and Vlachos, D., “On the Necessity of a Disposal Option for Returned Products that can be Remanufactured,” International Journal of Production Economics, Vol. 75, pp. 257266 (2002). doi: 10. 1016/S0925-5273(01)00096-2
- [8] Teunter, R., “Lot-sizing for Inventory Systems with Product Recovery,” Computer & Industrial Engineering, Vol. 46, pp. 431441 (2004). doi: 10.1016/j.cie.2004. 01.006
- [9] Bayindir, Z. P., Dekker, R. and Porras, E., “Determination of Recovery Effort for a Probabilistic Recovery System under Various Inventory Control Policies,” Omega, Vol. 34, pp. 571584 (2006). doi: 10.1016/j. omega.2005.01.015
- [10] Mitra, S., “Revenue Management for Remanufactured Products,” Omega, Vol. 35, pp. 553562 (2007). doi: 10.1016/j.omega.2005.10.003
- [11] Mitra, S., “Analysis of Two-echelon Inventory System with Returns,” Omega, Vol. 37, No. 1, pp. 106115 (2009). doi: 10.1016/j.omega.2006.10.002
- [12] Teng, H. M., Hsu, P. H., Chiu, Y. and Wee, H. M., “Optimal Ordering Decisions with Returns and Excess Inventory,” Applied Mathematics and Computation, Vol. 217, pp. 90099018 (2001). doi: 10.1016/j.amc.2011. 03.107
- [13] Lin, H. J., “Two-echelon Stochastic Inventory System with Returns and Partial Backlogging,” International Journal of Systems Science, Vol. 46, No. 6, pp. 966 975 (2015). doi: 10.1080/00207721.2013.803633
- [14] Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A. E. E. and Van Wassenhove, L. N., “Quantitative Models for Reverse Logistics: a Review,” European Journal of Operational Research, Vol. 103, pp. 117 (1997). doi: 10.1016/ S0377-2217(97)00230-0
- [15] Guide Jr., V. D. R., Jayaraman, V., Srivastava, R. and Benton W. C., “Supply-chain Management for Recoverable Manufacturing Systems,” Interfaces, Vol. 30, No. 3, pp. 125142 (2000). doi: 10.1287/inte.30.3.125. 11656
- [16] Porteus, E. L., “Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction,” Operations Research, Vol. 34, pp. 137144 (1986). doi: 10.1287/ opre.34.1.137
- [17] Paknejad, M. J., Nasri, F. and Affisco, J. F., “Defective Units in a Continuous Review (s, Q) System,” International Journal of Production Research, Vol. 33, pp. 27672777 (1995). doi: 10.1080/00207549508904844
- [18] Ouyang, L. Y. and Chang, H. C., “Impact of Investing in Quality Improvement on (Q, r, L) Model Involving Imperfect Production Process,” Production Planning and Control, Vol. 11, pp. 598607 (2000). doi: 10.1080/ 095372800414160
- [19] Tripathy, P. K., Wee, W.-M. and Majhi, P. R., “An EOQ Model with Process Reliability Considerations,” Journal of the Operational Research Society, Vol. 54, pp. 549554 (2003). doi: 10.1057/palgrave.jors.2601 540
- [20] Chung, K. L. and Hou, K. L., “An Optimal Production Run Time with Imperfect Production Process and Allowable Shortages,” Computers & Operations Research, Vol. 30, pp. 483490 (2003). doi: 10.1016/S0305-0548 (01)00091-0
- [21] Hou, K. L., “Optimal Production Run Length for Deterioration Production System with a Two-state Continuous-time Markovian Processes under Allowable Shortages,” Journal of the Operational Research Society, Vol. 56, pp. 346350 (2005). doi: 10.1057/palgrave. jors.2601792
- [22] Lin, H. J., “Reducing Lost-sales Rate on the Stochastic Inventory Model with Defective Goods for Mixtures of Distributions,” Applied Mathematical Modelling, Vol. 37, pp. 32963306 (2013). doi: 10.1016/j.apm. 2012.07.020
- [23] Ouyang, L. Y., Wu, K. S. and Ho, C. H., “An Integrated Vendor-buyer Inventory Model with Quality Improvement and Lead Time Reduction,” International Journal of Production Economics, Vol. 108, pp. 349 358 (2007). doi: 10.1016/j.ijpe.2006.12.019
- [24] Rahim, M. A. and Al-Hajailan, W. I., “An Optimal Production Run for an Imperfect Production Process with Allowable Shortages and Time-varying Fraction Defective Rate,” International Journal of Advanced Manufacturing Technology, Vol. 27, No. 1112, pp. 11701177 (2006). doi: 10.1007/s00170-004-2301-6
- [25] Rosenblatt, M. J. and Lee, H. L., “Economic Production Cycles with Imperfect Production Processes,” IIE Transactions, Vol. 18, pp. 4855 (1986). doi: 10.1080/ 07408178608975329
- [26] Goyal, S. K., “An Integrated Inventory Model for a Single Supplier-single Customer Problem,” International Journal of Production Research, Vol. 15, No. 1, pp. 107111 (1976). doi: 10.1080/00207547708943107
- [27] Banerjee, A., “A Joint Economic-lot-size Model for Purchaser and Vendor,” Decision Sciences, Vol. 17, pp. 292311 (1986). doi: 10.1111/j.1540-5915.1986. tb00228.x
- [28] Goyal, S. K., “A Joint Economics-lot-size Model for Purchaser and Vendor: a Comment,” Decision Sciences, Vol. 19, No. 1, pp. 236241 (1988). doi: 10.1111/ j.1540-5915.1988.tb00264.x
- [29] Goyal, S. K. and Nebebe, F., “Determination of Economic Production Shipment Policy for a Single-vendor-single-buyer System,” European Journal of Operational Research, Vol. 121, pp. 175178 (2000). doi: 10.1016/S0377-2217(99)00013-2
- [30] Kelle, P., Al-khateeb, F. and Miller, A. P., “Partnership and Negotiation Support by Joint Optimal Ordering/ Setup Policies for JIT,” International Journal of Production Economics, Vol. 8182, pp. 431441 (2003). doi: 10.1016/S0925-5273(02)00357-2
- [31] Ouyang, L. Y., Wu, K. S. and Ho, C. H., “Analysis of Optimal Vendor-buyer Integrated Inventory Policy Involving Defective Items,” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 1232 1245 (2006). doi: 10.1007/s00170-005-0008-y
- [32] Ho, C. H., Ouyang, L. Y. and Su, C. H., “Optimal Pricing, Shipment and Payment Policy for an Integrated Supplier-buyer Inventory Model with Two-part Trade Credit,” European Journal of Operational Research, Vol. 187, No. 2, pp. 496510 (2008). doi: 10.1016/j. ejor.2007.04.015
- [33] Lin, Y. J., “A Stochastic Periodic Review Integrated Inventory Model Involving Defective Items, Backorder Price Discount and Variable Lead Time,” 4OR - A Quarterly Journal of Operations Research, Vol. 8, No. 3, pp. 281297 (2010). doi: 10.1007/s10288-010- 0124-x
- [34] Lin, Y. J., Ouyang, L. Y. and Dang, Y. F., “A Joint Optimal Ordering and Delivery Policy for an Integrated Supplier-retailer Inventory Model with Trade Credit and Defective Items,” Applied Mathematics and Computation, Vol. 218, pp. 74987514 (2012). doi: 10. 1016/j.amc.2012.01.016
- [35] Ouyang, L. Y., Wu, K. S. and Ho, C. H., “Integrated Vendor-buyer Cooperative Models with Stochastic Demand in Controllable Lead Time,” International Journal of Production Economics, Vol. 92, pp. 255266 (2004). doi: 10.1016/j.ijpe.2003.10.016
- [36] Su, C. H., Ouyang, L. Y., Ho, C. H. and Chang, C. T., “Retailer’s Inventory Policy and Supplier’s Delivery Policy under Tow-level Trade Credit Strategy,” Asia Pacific Journal of Operational Research, Vol. 24, No. 5, pp. 613630 (2007). doi: 10.1142/S021759590700 1413