Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

S. K. Tiwari This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Anamika Rai1

1Department of Mathematics, K. S. Saket Post Graduate College, Ayodhya, Faizabad 224123, India


 

Received: May 4, 2015
Accepted: October 22, 2015
Publication Date: June 1, 2016

Download Citation: ||https://doi.org/10.6180/jase.2016.19.2.01  


ABSTRACT


In the present paper, using the field of linear frame [1-3], we shall considered Finslerian hypersurfaces given by generalized β-change of Finsler metric. The generalized change of Finsler metric is given by L = f (L, β1), β2),…, βm)), where f is any positively homogeneous function of degree one in L and  β1), β2),…, βm). Our purpose is to give some relations between the original Finslerian hypersurface and the other which is Finslerian given by generalized β-change. We have shown that generalizedchange makes three types of hypersurfaces invariant under certain conditions. Also, we have obtained the conditions under which this change will be a hyperplane of first, second and third kind.


Keywords: Finslerian Hypersurfaces, Generalized change, Finsler Metric, Hyperplane


REFERENCES


  1. [1] Kikuchi, S., “On the Theory of Subspace,” Tensor, N. S., Vol. 2, pp. 6769 (1952).
  2. [2] Kitayama, M., “Finslerian Hypersurfaces and Metric Transformation,” Tensor, N. S., Vol. 60, pp. 171178 (1998).
  3. [3] Moor, A., “Finsler Raume Von Identischer Torsion,” Acta Sci. Math.,Vol. 34, pp. 279288 (1973).
  4. [4] Matsumoto, M., “On Transformations of Locally Minkowskian Space,” Tensor, N. S., Vol. 22, pp. 103111 (1971).
  5. [5] Shibata, C., “On Invariant Tensors of Beta-change of Finsler Metrices,” J. Math. Kyoto Univ., Vol. 24, pp. 163188 (1984).
  6. [6] Pandey, T. N., Srivastava, E. and Tiwari, B., “On Generalized (, )  Metric,” Proceeding of Third Conference of Int. Acad. of Phy. Sci., pp. 311323 (1999).
  7. [7] Pandey, S. B., Chaubey, V. K. and Tripathi, Sanjay K., “Berwald Connection and Geodesic of a Finsler Space with Generalized (, )  Metric,” J. Rajasthan Acad. Phy. Sci., Vol. 8, No. 1, pp. 3948 (2009).
  8. [8] Pandey,T.N.,Prasad, B.N.andChaubey,V.K.,“Main Scalar of Two Dimensional Finsler Spaces with Generalized (, )  Metric,” Bull. Pure App. Math., Vol. 4, No. 2, pp. 168177 (2010).
  9. [9] Pandey, T. N., Chaubey, V. K. and Tripathi, Sanjay, K., Landsberg and Berwald Spaces of Mathematics, Vol. 70, No. 5, pp. 691699 (2011).
  10. [10] Matsumoto, M., “The Induced and Intrinsic Connections of a Hypersurface and Finslerian Projective Geometry,” J. Math. Kyoto Univ., Vol. 25, pp. 107144 (1985).
  11. [11] Rapsak, A., “Eine Neue Charkterisierung Finslersher Rume Skalarer und Konstanter Krmmung und Projektiv-ebene Rume,” Acta Math. Acad. Sci. Hunger, Vol.8,No.1,pp.118(1857).doi:10.1007/BF02025229
  12. [12] Haimovici, M., “Varietes Totalement Exremales Et Varieties Totalement Geodesiques Dons Les Expaces de Finsler,”Ann.Sci.,Univ.Jassy,Vol.25,pp.559644(1939).