REFERENCES
- [1] Liu, G. and Qu, J., “Guided Circumferential Waves in a Circular Annulus,” J. Appl. Mechs. ASME, Vol. 65, No. 2, pp. 424430 (1998). doi: 10.1115/1.2789071
- [2] Towfighi, S., “Elastic Wave Propagation in Circumferential Direction in Anisotropic Pipes,” Ph.D. Dissertation, The University of Arizona, Tucson, AZ (2001).
- [3] Towfighi, S., Kundu, T. and Ehsani, M., “Elastic Wave Propagation in Circumferential Direction in Anisotropic Cylindrical Curved Plates,” J. Appl. Mechs. ASME, Vol. 69, pp. 283291 (2002). doi: 10.1115/1.1464872
- [4] Hunter, C., Sneddon, I. and Hill, R., Visco-elastic Waves in Progress in Solid Mechanics. Wiley Interscience, New York (1960).
- [5] Flugge, W., Visco-elasticity, BLASDELL, London (1960).
- [6] Chen, W. Q., Cai, J. B., Ye, G. R. and Ding, H. J., “On Eigen Frequencies of an Anisotropic Sphere,” J. Appl. Mechs. ASME., Vol. 67, No. 2, pp. 422424 (2000). doi: 10.1115/1.1303803
- [7] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1994).
- [8] Cohen, H., Shah, A. H. and Ramakrishan, C. V., “Free Vibrations of a Spherically Isotropic Hollow Sphere,” Acustica., Vol. 26, pp. 329333 (1972).
- [9] Ding, H. J., Qiu, C. W. and Hong, L. Z., “Solutions to Equations of Vibrations of Spherical and Cylindrical Shells,” Appl. Maths Mechs. (Eng. Edi), Vol. 16, No. 1, pp. 115 (1995). doi: 10.1007/BF02453770
- [10] Lord, H. W. and Shulman, Y. A., “A Generalization of Dynamical Theory of Thermoelasticity,” J. Mechs. Physics Solids., Vol. 15, No. 5, pp. 299309 (1967). doi: 10.1016/0022-5096(67)90024-5
- [11] Green, A. E. and Lindsay, K. A., “Thermoelasticity,” J. Elasticity., Vol. 2, No. 1, pp. 17 (1972). doi: 10.1007/ BF00045689
- [12] Hetnarski, R. B. and Ignaczac, J., “Generalized Thermoelasticity: Closed form Solutions,” J. Therm. Stresses., Vol. 16, No. 4, pp. 473498 (1993). doi: 10.1080/0149 5739308946241
- [13] Othman, I. A. M., Ezzat, M. A., Zaki, S. A. and ElKaramany, A. S., “Generalized Thermo-viscoelasctic Plane Waves with Two Relaxation Times,” Int. J. Engig Scie., Vol. 40, No. 12, pp. 13291347 (2002). doi: 10. 1016/S0020-7225(02)00023-X
- [14] Singh, R. P. and Jain, S. K., “Free Asymmetric Transverse Vibration of Parabolically Varying Thickness Polar Orthotropic Annular Plate with Flexible Edge Conditions,” Tamkang J. Science Engineering, Vol. 7, No. 1, pp. 4152 (2004). doi: 10.6180/jase.2004.7.1.07
- [15] Sharma, J. N., “Some Considerations on the RayleighLamb Wave Propagation in Visco-thermoelastic Plates,” J. Vib. Cont., Vol. 11, No. 10, pp. 13111335 (2005). doi: 10.1177/1077546305058267
- [16] Neuringer, J. L., “The Fröbenius Method for Complex Roots of the Indicial Equation,” Int. J. Math Edu. Sci Tech., Vol. 9, No. 1, pp. 7172 (1978). doi: 10.1080/00 20739780090110
- [17] Towfighi, S. and Kundu, T., “Elastic Wave Propagation in Anisotropic Spherical Curved Plates,” Int. J. Solids Struct., Vol. 40, No. 20, pp. 54955510 (2003). doi: 10.1016/S0020-7683(03)00278-6
- [18] Sharma, J. N. and Sharma, N., “Three Dimensional Free Vibration Analysis of a Homogeneous Transradially Isotropic Thermo-elastic Sphere,” J. Appl. Mech. ASME., Vol. 77, No. 2, pp. 02100419 (2009). doi: 10.1115/1.3172141
- [19] Sharma, J. N. and Sharma, N., “3-D Exact Vibration Analysis of a Generalized Thermoelastic Hollow Sphere with Matrix Frobenius Method,” World J. Mechs., Vol. 2, No. 2, pp. 98112 (2012). doi: 10.4236/wjm.2012. 22012
- [20] Sharma, J. N., Sharma, D. K. and Dhaliwal, S. S., “Free Vibration Analysis of a Viscothermoelastic Solid Sphere,” Int. J. Appl. Maths. Mechs., Vol. 8, No. 1, pp. 4568 (2012).
- [21] Sharma, J. N., Sharma, D. K. and Dhaliwal, S. S., “Free Vibration Analysis of a Rigidly Fixed Viscothermoelastic Hollow Sphere,” Indian J. Pure Appl. Maths., Vol. 44, No. 5, pp. 559586 (2013). doi: 10.1007/s13 226-013-0030-y
- [22] Sharma, J. N., Sharma, P. K. and Mishra, K. C., “Analysis of Free Vibrations in Axisymmetric Functionally Graded Thermoelastic Cylinder,” Acta Mechanica., Vol. 225, No. 6, pp. 15811594 (2014). doi: 10.1007/ s00707-013-1010-3
- [23] Sharma, J. N., Sharma, D. K., Dhaliwal, S. S. and Walia, V., “Vibration Analysis of Axisymmetric Functionally Graded Viscothermoelastic Sphere,” Acta Mechanica Sinica., Vol. 30, No. 1, pp. 100111 (2014). doi: 10.1007/s10409-014-0016-y
- [24] Hsu, M. H., “Vibration Analysis of Annular Plates,” Tamkang J. Science Engineering., Vol. 10, No. 3, pp. 193199 (2007). doi: 10.6180/jase.2007.10.3.02
- [25] Sharma, S., Gupta, U. S. and Singhal, P., “Vibration Analysis of Non-Homogenous Orthotropic Rectangular Plates of Variable Thickness Resting on Winkler Foundation,” J. Appl. Science and Engineering., Vol. 15, No. 3, pp. 291300 (2012). doi: 10.6180/jase.2012. 15.3.10
- [26] Khanna, A. and Sharma, A. K., “Natural Vibration of Visco-elastic Plate of Varying Thickness with Thermal Effects,” J. Appl. Science and Engineering., Vol. 16, No. 2, pp. 135140 (2013). doi: 10.6180/jase.2013.16. 2.04
- [27] Dhaliwal, R. S. and Singh, A., Dynamic Coupled Thermo Elasticity, Hindustan Publication Corporation, New Delhi (1980).
- [28] Watson, G. N., Theory of Bessel Functions, Cambredge University, Press London (1922).
- [29] Cullen, C. G., Matrices and Linear Transformations, Addison-Wesley Publishing Company Reading Massachusetts, Palo Alto London (1966).
- [30] Ding, H., Chen, W. and Zhang, L., Elasticity of Transversally Isotropic Materials, Springer, The Netherlands (2006).
- [31] Richards, R. J. Principles of Solid Mechanics, CRC Press, Boca Raton London New York Washington, D.C. (2001).
- [32] Ning, Y. U., Shoji, I. and Tatsuo, I., “Characteristics of Temperature Field due to Pulsed Heat Input Calculated by Non-Fourier Heat Conduction Hypothesis”, JSME, Int. J. Ser. A., Vol. 47, pp. 574580 (2004). doi: 10. 1299/jsmea.47.574