Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Rajneesh Kumar1, Shaloo Devi This email address is being protected from spambots. You need JavaScript enabled to view it.2 and S. M. Abo-Dahab3,4

1Department of Mathematics, Kurukshetra University, Kurukshetra, India
2Department of Mathematics & Statistics, Himachal Pradesh University, Shimla, India
3Mathematics Department, Faculty of Science, Taif University, Saudi Arabia
4Mathematics Department, Faculty of Science, SVU, Qena, Egypt


 

Received: May 10, 2017
Accepted: November 16, 2017
Publication Date: March 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201803_21(1).0001  

ABSTRACT


The present problem deals with the study of propagation of Stoneley waves at the interface of two dissimilar isotropic modified couple stress thermoelastic with mass diffusion medium in the context of Lord-Shulman (L-S), Green-Lindsay (G-L) theories of thermoelasticity. The dispersion equation of Stoneley waves is derived in the form of determinant by using appropriate boundary conditions. The dispersion curves giving the values of determinant of secular equation, Stoneley waves velocity and attenuation coefficient with respect to angular velocity for different values of wave number in the absence and presence of mass diffusion are computed numerically and shown graphically.


Keywords: Stoneley Waves, Modified Couple Stress Theory, Thermoelastic Diffusion, Stoneley Waves Velocity, Attenuation Coefficient


REFERENCES


  1. [1] Stoneley, R., “Elastic Waves at the Surface of Separation of Two Solids,” Proceeding of Royal Society of London, Vol. 106, pp. 416428 (1924). doi: 10.1190/ 1.9781560801931.ch3o
  2. [2] Tajuddin, M., “Existence of Stoneley Waves at an Unbounded Interface between Two Micropolar Elastic Half Spaces,” J. Applied Mechanics, Vol. 62, pp. 255 257 (1995). doi: 10.1115/1.2895919
  3. [3] Sinha, S. B. and Elsibai, K. A., “Effect of the Sound Relaxation Time on the Propagation of Stoneley Waves,” J. Thermal Stresses, Vol. 21, No. 1, pp. 4153 (1998).
  4. [4] Ting, T. C. T., “Secular Equations for Rayleigh and Stoneley Waves in Exponentially Graded Elastic Materials of General Anisotropy under the Influence of Gravity,” J. Elast., Vol. 105, pp. 331–347 (2011). doi: 10.1007/s10659-011-9314-9
  5. [5] Abo-Dahab, S. M., “Surface Waves in Coupled and Generalized Thermoelasticity,” Advances in Materials and Corrosion,Vol.2, pp. 4653 (2013). doi:10.1007/ 978-94-007-2739-7_371
  6. [6] Abo-Dahab, S. M., “Surface Waves in Coupled and Generalized Thermoelasticity,” Encyclopedia of Thermal Stresses, R. Hetnarski (ed.), (2014). doi: 10.1007/ 978-94-007-2739-7
  7. [7] Abo-Dahab, S. M., “Propagation of Stoneley Waves in Magneto-thermoelastic Materials with Voids and Two Relaxation Times,” J. of Vibration and Control, Vol. 21, No. 6, pp. 11441153 (2015). doi: 10.1177/1077 546313493651
  8. [8] Kumar, R., Kumar, K. and Nautiyal, R. C., “Propagation of Stoneley Waves in Couple Stress Generalized ThermoelasticMedium,”Global J.ofScienceFrontier Research Mathematics and Decision Sciences, Vol. 13, No. 5, pp. 113 (2013).
  9. [9] Hideo, C. and Stanislav, I. R., “Interface Wave Propagation and Edge Conversion at a Low Stiffness Interphase Layer between Two Elastic Solids: a Numerical Study,” Ultrasonics, Vol. 62, pp. 213222 (2015). doi: 10.1016/j.ultras.2015.05.021
  10. [10] Singh, A., Lakhsman, A. and Chattopadhyay, A., “Effect of Internal Friction and the Lamé Ratio on Stoneley Wave Propagation in Viscoelastic Media of Order 1,” International Journal of Geomechanics, Vol. 16, No. 4 (2016). doi: 10.1061/(ASCE)GM.1943-5622. 0000608
  11. [11] Voigt, W., Theoretische Studie nuberdie Elasticitatsverhaltnisse der Krystalle, Abh. Ges. Wiss. Gottingen, 34 (1887).
  12. [12] Cosserat, E. and Cosserat, F., Theory of Deformable Bodies, Hermann et Fils, Paris (1909).
  13. [13] Yang, F., Chong, A. C. M., Lam, D. C. C. and Tong, P., “Couple Stress Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct., Vol. 39, pp. 2731–2743 (2002). doi: 10.1016/S0020-7683(02)00152-X
  14. [14] Simsek, M. and Reddy, J. N., “Bending and Vibration of Functionally Graded Microbeams Using a New Higher Order Beam Theory and the Modified Couple Stress Theory,” Int. J. of Engg. Sci., Vol. 64, pp. 37–53 (2013). doi: 10.1016/j.ijengsci.2012.12.002
  15. [15] Shaat, M., Mahmoud, F. F., Gao, X. L. and Faheem, A. F., “Size-dependent Bending Analysis of Kirchhoff Nano-plates Based on a Modified Couple-stress Theory Including Surface Effects,” Int. J. of Mech. Sci., (2014). doi: 10.1016/j.ijmecsci.2013.11.022
  16. [16] Darijani, H. and Shahdadi, A. H., “A New Shear Deformation Model with Modified Couple Stress Theory for Microplates,” Acta Mech., Vol. 226, pp. 2773– 2788 (2015). doi: 10.1007/s00707-015-1338-y
  17. [17] Nowacki, W., “Dynamical Problems of Thermo Diffusion in Solids I,” Bull Acad. Pol. Sci. Ser. Sci. Tech., Vol. 22, pp. 5564 (1974).
  18. [18] Sherief, H. H., Saleh, H. and Hamza, F., “The Theory of Generalized Thermoelastic Diffusion,” Int. J. Engg. Sci., Vol. 42, pp. 591608 (2004). doi: 10.1016/j. ijengsci.2003.05.001
  19. [19] Sherief, H. H. and Saleh, H., “AHalf-space Problem in the Theory of Generalized Thermoelastic Diffusion,” Int. J. of Solid and Structures, Vol. 42, pp. 44844493 (2005). doi: 10.1016/j.ijsolstr.2005.01.001
  20. [20] Kumar, R. and Kansal, T.,“Propagation of Lamb Waves in Transversely Isotropic Thermoelastic Diffusion Plate,” Int. J. of Solid and Structures, Vol. 45, pp. 58905913 (2008). doi: 10.1016/j.ijsolstr.2008.07.005
  21. [21] Kumar, R., Ahuja, S. and Garg, S. K., “Numerical Analysis of the Propagation of Stoneley Waves at an Interface between Microstretch Thermoelastic Diffusion Solid Half Spaces,” Latin American Journal of Solids and Structures, Vol. 11, pp. 24082425 (2014). doi: 10.1590/S1679-78252014001300005
  22. [22] Daliwal, R. S. and Singh, A., Dynamical Coupled Thermoelasticity, Hindustan Publishers, Delhi (1980).