REFERENCES
- [1] Stoneley, R., “Elastic Waves at the Surface of Separation of Two Solids,” Proceeding of Royal Society of London, Vol. 106, pp. 416428 (1924). doi: 10.1190/ 1.9781560801931.ch3o
- [2] Tajuddin, M., “Existence of Stoneley Waves at an Unbounded Interface between Two Micropolar Elastic Half Spaces,” J. Applied Mechanics, Vol. 62, pp. 255 257 (1995). doi: 10.1115/1.2895919
- [3] Sinha, S. B. and Elsibai, K. A., “Effect of the Sound Relaxation Time on the Propagation of Stoneley Waves,” J. Thermal Stresses, Vol. 21, No. 1, pp. 4153 (1998).
- [4] Ting, T. C. T., “Secular Equations for Rayleigh and Stoneley Waves in Exponentially Graded Elastic Materials of General Anisotropy under the Influence of Gravity,” J. Elast., Vol. 105, pp. 331–347 (2011). doi: 10.1007/s10659-011-9314-9
- [5] Abo-Dahab, S. M., “Surface Waves in Coupled and Generalized Thermoelasticity,” Advances in Materials and Corrosion,Vol.2, pp. 4653 (2013). doi:10.1007/ 978-94-007-2739-7_371
- [6] Abo-Dahab, S. M., “Surface Waves in Coupled and Generalized Thermoelasticity,” Encyclopedia of Thermal Stresses, R. Hetnarski (ed.), (2014). doi: 10.1007/ 978-94-007-2739-7
- [7] Abo-Dahab, S. M., “Propagation of Stoneley Waves in Magneto-thermoelastic Materials with Voids and Two Relaxation Times,” J. of Vibration and Control, Vol. 21, No. 6, pp. 11441153 (2015). doi: 10.1177/1077 546313493651
- [8] Kumar, R., Kumar, K. and Nautiyal, R. C., “Propagation of Stoneley Waves in Couple Stress Generalized ThermoelasticMedium,”Global J.ofScienceFrontier Research Mathematics and Decision Sciences, Vol. 13, No. 5, pp. 113 (2013).
- [9] Hideo, C. and Stanislav, I. R., “Interface Wave Propagation and Edge Conversion at a Low Stiffness Interphase Layer between Two Elastic Solids: a Numerical Study,” Ultrasonics, Vol. 62, pp. 213222 (2015). doi: 10.1016/j.ultras.2015.05.021
- [10] Singh, A., Lakhsman, A. and Chattopadhyay, A., “Effect of Internal Friction and the Lamé Ratio on Stoneley Wave Propagation in Viscoelastic Media of Order 1,” International Journal of Geomechanics, Vol. 16, No. 4 (2016). doi: 10.1061/(ASCE)GM.1943-5622. 0000608
- [11] Voigt, W., Theoretische Studie nuberdie Elasticitatsverhaltnisse der Krystalle, Abh. Ges. Wiss. Gottingen, 34 (1887).
- [12] Cosserat, E. and Cosserat, F., Theory of Deformable Bodies, Hermann et Fils, Paris (1909).
- [13] Yang, F., Chong, A. C. M., Lam, D. C. C. and Tong, P., “Couple Stress Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct., Vol. 39, pp. 2731–2743 (2002). doi: 10.1016/S0020-7683(02)00152-X
- [14] Simsek, M. and Reddy, J. N., “Bending and Vibration of Functionally Graded Microbeams Using a New Higher Order Beam Theory and the Modified Couple Stress Theory,” Int. J. of Engg. Sci., Vol. 64, pp. 37–53 (2013). doi: 10.1016/j.ijengsci.2012.12.002
- [15] Shaat, M., Mahmoud, F. F., Gao, X. L. and Faheem, A. F., “Size-dependent Bending Analysis of Kirchhoff Nano-plates Based on a Modified Couple-stress Theory Including Surface Effects,” Int. J. of Mech. Sci., (2014). doi: 10.1016/j.ijmecsci.2013.11.022
- [16] Darijani, H. and Shahdadi, A. H., “A New Shear Deformation Model with Modified Couple Stress Theory for Microplates,” Acta Mech., Vol. 226, pp. 2773– 2788 (2015). doi: 10.1007/s00707-015-1338-y
- [17] Nowacki, W., “Dynamical Problems of Thermo Diffusion in Solids I,” Bull Acad. Pol. Sci. Ser. Sci. Tech., Vol. 22, pp. 5564 (1974).
- [18] Sherief, H. H., Saleh, H. and Hamza, F., “The Theory of Generalized Thermoelastic Diffusion,” Int. J. Engg. Sci., Vol. 42, pp. 591608 (2004). doi: 10.1016/j. ijengsci.2003.05.001
- [19] Sherief, H. H. and Saleh, H., “AHalf-space Problem in the Theory of Generalized Thermoelastic Diffusion,” Int. J. of Solid and Structures, Vol. 42, pp. 44844493 (2005). doi: 10.1016/j.ijsolstr.2005.01.001
- [20] Kumar, R. and Kansal, T.,“Propagation of Lamb Waves in Transversely Isotropic Thermoelastic Diffusion Plate,” Int. J. of Solid and Structures, Vol. 45, pp. 58905913 (2008). doi: 10.1016/j.ijsolstr.2008.07.005
- [21] Kumar, R., Ahuja, S. and Garg, S. K., “Numerical Analysis of the Propagation of Stoneley Waves at an Interface between Microstretch Thermoelastic Diffusion Solid Half Spaces,” Latin American Journal of Solids and Structures, Vol. 11, pp. 24082425 (2014). doi: 10.1590/S1679-78252014001300005
- [22] Daliwal, R. S. and Singh, A., Dynamical Coupled Thermoelasticity, Hindustan Publishers, Delhi (1980).