Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Rui Huang This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Binwu Ji1

1Guilin University of Aerospace Technology, Guilin 541004, P.R. China


 

Received: May 4, 2017
Accepted: May 16, 2018
Publication Date: December 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201812_21(4).0013  

ABSTRACT


Locating ground targets in unmanned aerial vehicle images is a key problem in computer vision and UAV applications. In this paper, we propose a novel ground target localization algorithm based on the image process technique. The main idea of this paper is to utilize scale-invariant feature transform (SIFT) feature descriptor to tackle the proposed problem. SIFT feature descriptor can extract feature points which are invariant to scaling, orientation, affine transforms and illumination changes. Firstly, SIFT descriptors are matched from UAV images and coarse positioning result, and location points are extracted from UAV images. Secondly, coordinates in coarse positioning results are gained from remote sensing images using the radiation transformation model, and the final ground target localization results are obtained from the coordinate transformation relation. Experimental results demonstrate that the proposed algorithm can detect and locate ground target in UAV images with high accuracy.


Keywords: Ground Target Localization, Unmanned Aerial Vehicle, Image Analysis, SIFT Feature


REFERENCES


  1. [1] Jabbari, A. H., and J. W. Yoon (2016) Robust Imagebased Control of the Quadrotor Unmanned Aerial Vehicle, Nonlinear Dynamics 85(3), 20352048. doi: 10. 1007/s11071-016-2813-2
  2. [2] Eugene, M. (2016) Fractal Methods for Extracting Artificial Objects from the Unmanned Aerial Vehicle Images, Journal of Applied Remote Sensing 10, AR 025020. doi: 10.1117/1.JRS.10.025020
  3. [3] Yang, Y., Z. J. Lin, and F. Z. Liu (2016) Stable Imaging and Accuracy Issues of Low-altitude Unmanned Aerial Vehicle Photogrammetry Systems, Remote Sensing 8(4), AR 316. doi: 10.3390/rs8040316
  4. [4] Abdulla, A. R., F. N. He, M. Adel, E. S. Naser, and H. Ayman (2016) Using an Unmanned Aerial Vehiclebased Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition, Remote Sensing 8(2), AR 95. doi: 10.3390/rs8020095
  5. [5] Liu, S. J., X. H. Tong, J. Chen, X. F. Liu, W. Z. Sun, H. Xie, P. Chen, Y. M. Jin, and Z. Ye (2016) ALinear Feature-based Approach for the Registration of Unmanned Aerial Vehicle Remotely-sensed Images and Airborne LiDAR Data, Remote Sensing 8(2), AR 82. doi: 10. 3390/rs8020082
  6. [6] Xiao, X. W., B. X. Guo, D. R. Li, L. H. Li, N. Yang, J. C. Liu, P. Zhang, and Z. Peng (2016) Multi-view Stereo Matching Based on Self-adaptive Patch and Image Grouping for Multiple Unmanned Aerial Vehicle Imagery, Remote Sensing 8(2), AR 89. doi: 10.3390/ rs8020089
  7. [7] Flavia, T., P. Christopher, P. Paul, G. Salvatore, and P. Maurizio (2015) Large-scale Particle Image Velocimetry from an Unmanned Aerial Vehicle, IEEE-ASME Transactions on Mechatronics 20(6), 32693275. doi: 10.1109/TMECH.2015.2408112
  8. [8] Feng, H. Z., H. W. Liu, J. K. Yan, F. Z. Dai, and M. Fang (2016) A Fast Efficient Power Allocation Algorithm for Target Localization in Cognitive Distributed Multiple Radar Systems, Signal Processing 127, 100 116. doi: 10.1016/j.sigpro.2015.12.022
  9. [9] Chu, Y. L., L. Y. He, and F. Yao (2016) An Improved Localization Algorithm of Taylor Series Expansion Search Target, OPTIK 127(19), 80708075.
  10. [10] Sajjad, B., Z. G. Sevgi, and U. B. Elif (2015) Implementation of an Enhanced Target Localization and Identification Algorithm on a Magnetic WSN, IEICE Transactions on Communications E98B(10), 2022 2032. doi: 10.1587/transcom.E98.B.2022
  11. [11] Martin, E. and H. C. So (2015) Weighted Least Squares Algorithm for Target Localization in Distributed MIMO Radar, Signal Processing 115, 144150.
  12. [12] Joshua, V. H., T. Pratap, and I. Volkan (2015) Algorithms for Cooperative Active Localization of Static TargetswithMobileBearingSensors under Communication Constraints, IEEE Transactions on Robotics 31(4), 864876. doi: 10.1109/TRO.2015.2432612
  13. [13] Yacine, M., M. Said, F. Mouloud, Z. Abdelhalim, and A. Mehdi (2015) SV-training and Kernel Change Detection Algorithm for the Abrupt Modification in EMI Data for Buried MetallicTargetLocalizationand Identification, Applied Computational Electromagnetics Society Journal 30(1), 132139.
  14. [14] Jang, E. J. and D. S. Han (2014) Location Adaptive Least Square Algorithm for Target Localization in Multi-static Active Sonar, IEICE Transactions on Communications E97B(1), 204209. doi: 10.1587/ transcom.E97.B.204
  15. [15] Nikhil, D., G. Edward, and T. C. Henderson (2014) Target Localization and AutonomousNavigation Using Wireless Sensor Networks-A Pseudogradient Algorithm Approach, IEEE Systems Journal 8(1), 93103. doi: 10.1109/JSYST.2013.2260631
  16. [16] Damian, F., S. J. Walmsley, G. Anne-Claude, H. W. Choi, and A. I. Nesvizhskii (2013) LuciPHOr: Algorithm for Phosphorylation Site Localization with False Localization Rate Estimation Using Modified Targetdecoy Approach, Molecular & Cellular Proteomics 12(11), 34093419. doi: 10.1074/mcp.M113.028928
  17. [17] Scott, R., W. Elisabeth, and G. D. Hugo (2013) Deformable Mesh Registration for the Validation of Automatic Target Localization Algorithms, Medical Physics, 40(7), AR 071721. doi: 10.1118/1.4811105
  18. [18] Huang, F. C., S. Y. Huang, J. W. Ker, and Y. C. Chen (2012) High-performance SIFT Hardware Accelerator for Real-time Image Feature Extraction, IEEE Transactions on Circuits and Systems for Video Technology 22(3), 340351. doi: 10.1109/TCSVT.2011.2162760
  19. [19] Fu, W. P., C. Qin, J. Liu, S. Q. Yang, and W. Wang (2011) Matching and Location of Image Object Based on SIFT Algorithm, Chinese Journal of Scientific Instrument 32(1), 163169.
  20. [20] Lowe, D. G. (2004) Distinctive Image Features from Scale-invariant Keypoints, International Journal of Computer Vision 60(2), 91110. doi: 10.1023/B:VISI. 0000029664.99615.94