REFERENCES
- [1] R. N. Hunter, A. Self, and J. Read. The Shell Bitumen Handbook, 5th edition. Sixth edit. London: ICE Publishing, 2003, 789. DOI: 10.1680/sbh.32200.
- [2] L. G. A. Farias, B. d. C. Amoni, J. B. Bastos, H. B. de Sant’Ana, J. L. Leitinho, S. d. A. Soares, and J. B. Soares, (2016) “Effects of nanoclay and nanocomposites on bitumen rheological properties" Construction and Building Materials 125: 873–883. DOI: 10.1016/j.conbuildmat.2016.08.127.
- [3] V. Kosma, S. Hayrapetyan, E. Diamanti, E. P. Giannelis, and A. Dhawale, (2018) “Bitumen nanocomposites with improved performance" Construction and Building Materials 160: 30–38. DOI: 10.1016/j.conbuildmat.2017.11.024.
- [4] M. El-Shafie, I. M. Ibrahim, and A. M. Abd El Rahman, (2012) “The addition effects of macro and nano clay on the performance of asphalt binder" Egyptian Journal of Petroleum 21(2): 149–154. DOI: 10.1016/j.ejpe.2012.11.008.
- [5] F. J. Ortega, F. J. Navarro, M. García-Morales, and T. McNally, (2017) “Effect of shear processing on the linear viscoelastic behaviour and microstructure of bitumen/montmorillonite/MDI ternary composites" Journal of Industrial and Engineering Chemistry 48: 212–223. DOI: 10.1016/j.jiec.2017.01.004.
- [6] M. E. Abdullah, K. A. Zamhari, R. Buhari, M. N. Nayan, and M. R. Hainin, (2014) “Short Term and Long Term Aging Effects of Asphalt Binder Modified with Montmorillonite" Key Engineering Materials 595: 996–1002. DOI: 10.4028/www.scientific.net/KEM.594-595.996.
- [7] H. Di Benedetto, F. Olard, C. Sauzéat, and B. Delaporte, (2012) “Linear viscoelastic behaviour of bituminous materials: From binders to mixes" Road Materials and Pavement Design 5(sup1): 163–202. DOI: 10.1080/14680629.2004.9689992.
- [8] J. M. L. Crucho, J. M. C. das Neves, S. D. Capitão, and L. G. de Picado-Santos, (2018) “Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay" Construction and Building Materials 181: 309–318. DOI: 10.1016/j.conbuildmat.2018.06.052.
- [9] A. Mansourian, A. Rezazad, and F. Karimian, (2019) “Performance evaluation of asphalt binder modified with EVA / HDPE / nanoclay based on linear and non-linear viscoelastic behaviors" Construction and Building Materials 208: 554–563. DOI: 10.1016/j.conbuildmat.2019.03.065.
- [10] V. S. Punith and A. Veeraragavan, (2011) “Behavior of Reclaimed Polyethylene Modified Asphalt Cement for Paving Purposes" Journal of Materials in Civil Engineering 23(6): 833–845. DOI: 10.1061/(asce)mt.1943-5533.0000235.
- [11] M. Ameri, R. Mohammadi, M. Vamegh, and M. Molayem, (2017) “Evaluation the effects of nanoclay on permanent deformation behavior of stone mastic asphalt mixtures" Construction and Building Materials 156: 107–113. DOI: 10.1016/j.conbuildmat.2017.07.055.
- [12] G. Liu, M. Van De Ven, S. Wu, J. Yu, and A. Molenaar, (2011) “Influence of organo-montmorillonites on fatigue properties of bitumen and mortar" International Journal of Fatigue 33(12): 1574–1582. DOI: 10.1016/j.ijfatigue.2011.06.014.
- [13] M. Kotal and A. K. Bhowmick, (2015) “Polymer nanocomposites from modified clays: Recent advances and challenges" Progress in Polymer Science 51: 127–187. DOI: 10.1016/j.progpolymsci.2015.10.001.
- [14] E. A. Siddig, C. P. Feng, and L. Y. Ming, (2018) “Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders" Construction and Building Materials 169: 276–282. DOI: 10.1016/j.conbuildmat.2018.03.012.
- [15] C. Fang, R. Yu, Y. Zhang, J. Hu, M. Zhang, and X. Mi, (2012) “Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite" Polymer Testing 31(2): 276–281. DOI: 10.1016/j.polymertesting.2011.11.008.
- [16] M. E. Abdullah, K. A. Zamhari, M. R. Hainin, E. A. Oluwasola, N. A. Hassan, and N. I. M. Yusoff, (2016) “Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives" Construction and Building Materials 112: 232–240. DOI: 10.1016/j.conbuildmat.2016.02.089.
- [17] L. de Godoi. “Estudo do comportamento dos ligantes asfálticos utilizados na imprimação asfáltica relacionados à emissão de voc’s". (Master). Universidade Federal do Paraná, 2011, 167.
- [18] M. A. Farrukh, K. M. Butt, K. K. Chong, and W. S. Chang, (2019) “Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties" Journal of Saudi Chemical Society 23(5): 561–575. DOI: 10.1016/j.jscs.2018.10.002.
- [19] S. A. Al-Bayaty, R. A. Al-Uqaily, and N. J. Jubier, (2020) “Using the Coats-Redfern method during thermogravimetric analysis and differential scanning calorimetry analysis of the thermal stability of epoxy and epoxy/silica nanoparticle nanocomposites" Journal of Southwest Jiaotong University 55(4): DOI: 10.1002/9783527678679.dg03068.
- [20] N. Nciri, J. Kim, N. Kim, and N. Cho, (2016) “An in-depth investigation into the physicochemical, thermal, microstructural, and rheological properties of petroleum and natural asphalts" Materials 9(10): 3–20. DOI: 10.3390/ma9100859.
- [21] G. Cheraghian, M. P. Wistuba, S. Kiani, A. R. Barron, and A. Behnood, (2021) “Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles" Scientific Reports 11: 1–20. DOI: 10.1038/s41598-021-90620-w.
- [22] B. B. Nyakuma. “Thermal oxidative and nonoxidative degradation behaviour of afuze coal”. 2021. DOI: 10.20944/preprints202105.0355.v1.
- [23] K. S. Yoshiki and C. R. Phillips, (1985) “Kinetics of the thermo-oxidative and thermal cracking reactions of Athabasca bitumen" Fuel 64(11): 1591–1598. DOI: 10.1016/0016-2361(85)90377-1.
- [24] M. V. Kok, (2011) “Thermo-oxidative reactions of crude oils": 411–414. DOI: 10.1007/s10973-010-1117-x.
- [25] S. H. Firoozifar, S. Foroutan, and S. Foroutan, (2011) “Chemical Engineering Research and Design The effect of asphaltene on thermal properties of bitumen" Chemical Engineering Research and Design 89(10): 2044–2048. DOI: 10.1016/j.cherd.2011.01.025.
- [26] H. Yu, Z. Leng, and Z. Gao, (2016) “Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives" Construction and Building Materials 125: 168–174. DOI: 10.1016/j.conbuildmat.2016.08.032.
- [27] X. Fu, M. He, and Y. Liu. “Study on aging of lignin modified asphalt under thermogravimetric conditions”. In: E3S Web of Conferences. 233. 2021, 4–7.
- [28] M. B. Ahmad, Y. Gharayebi, M. S. Salit, M. Z. Hussein, and K. Shameli, (2011) “Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide / Montmorillonite ( MMT ) Nanocomposites" International Journal of Molecular Sciences 12: DOI: 10.3390/ijms12096040.
- [29] S. Gaidukov, U. Cabulis, K. Gromilova, V. Tupureina, and A. Grigalovica, (2013) “Preparation and structural properties of free films from rapeseed oil-based rigid polyurethane-montmorillonite nanocomposites" International Journal of Polymer Science 2013: DOI: 10.1155/2013/834595.
- [30] A. Behnood and M. Modiri Gharehveran. Morphology, rheology, and physical properties of polymer-modified asphalt binders. 2019. DOI: 10.1016/j.eurpolymj.2018.10.049.
- [31] C. Fang, R. Yu, Y. Li, M. Zhang, J. Hu, and M. Zhang, (2013) “Preparation and characterization of an asphaltmodifying agent with waste packaging polyethylene and organic montmorillonite" Polymer Testing 32(5): 953–960. DOI: 10.1016/j.polymertesting.2013.04.006.
- [32] D. R. do Nascimento, R. M. Bringel, T. T. F. Pamplona, J. B. Soares, and S. d. A. Soares, (2008) “ENERGIA DE ATIVAÇÃO DE FLUXO E A CORRELAÇÃO COM AS PROPRIEDADES DOS LIGANTES ASFÁLTICOS."