REFERENCES
- [1] T. Ito, Y. Sakurai, Y. Kakuta, M. Sugano, and K. Hirano, (2012) “Biodiesel production from waste animal fats using pyrolysis method" Fuel Processing Technology 94(1): 47–52. DOI: 10.1016/j.fuproc.2011.10.004.
- [2] R. E. Sims, W. Mabee, J. N. Saddler, and M. Taylor, (2010) “An overview of second generation biofuel technologies" Bioresource Technology 101(6): 1570–1580. DOI: 10.1016/j.biortech.2009.11.046.
- [3] A. Singh, S. I. Olsen, and P. S. Nigam, (2011) “A viable technology to generate third-generation biofuel" Journal of Chemical Technology and Biotechnology 86(11): 1349–1353. DOI: 10.1002/jctb.2666.
- [4] R. Hafriz, A. Salmiaton, R. Yunus, and Y. Taufiq-Yap, (2018) “Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst" Bulletin of Chemical Reaction Engineering amp;amp; Catalysis 13(3): 489–501. DOI: 10.9767/bcrec.13.3.1956.489-501.
- [5] K. Ainie,W. Siew, Y. Tan, A. Ma, et al., (1995) “Characterization of a by-product of palm oil milling." Elaeis 7(2): 162–170.
- [6] R. Supriyanto, W. Simanjuntak, K. D. Pandiangan, R. T. M. Situmeang, and M. Y. Ahmadhani, (2018) “Chemical composition of liquid fuel produced by copyrolysis of sugarcane bagasse and sludge palm oil using zeolite-Y as catalyst" Oriental Journal of Chemistry 34(3): 1533–1540. DOI: 10.13005/ojc/340345.
- [7] W. L. Liew, M. A. Kassim, K. Muda, S. K. Loh, and A. C. Affam, (2015) “Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review" Journal of Environmental Management 149: 222–235. DOI: 10.1016/j.jenvman.2014.10.016.
- [8] R. Manurung, D. A. Ramadhani, and S. Maisarah. “One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production”. In: 1855. Cited by: 9; All Open Access, Bronze Open Access. 2017. DOI: 10.1063/1.4985531.
- [9] P. Muanruksa, J.Winterburn, and P. Kaewkannetra, (2019) “A novel process for biodiesel production from sludge palm oil" MethodsX 6: 2838–2844. DOI: 10.1016/j.mex.2019.09.039.
- [10] N. A. Wafti, H. L. Lik Nang, and C. Y. May, (2012) “Value-added products from palm sludge oil" Journal of Applied Sciences 12(11): 1199–1202. DOI: 10.3923/jas.2012.1199.1202.
- [11] A. Hayyan, M. Z. Alam, M. E. Mirghani, N. A. Kabbashi, N. I. N. M. Hakimi, Y. M. Siran, and S. Tahiruddin, (2010) “Sludge palm oil as a renewable raw material for biodiesel production by two-step processes" Bioresource Technology 101(20): 7804–7811. DOI: 10.1016/j.biortech.2010.05.045.
- [12] L. Thinagaran and K. Sudesh, (2019) “Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate" Waste and Biomass Valorization 10(3): 709–720. DOI: 10.1007/s12649-017-0078-8.
- [13] A. Demirbas, (2008) “Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions" Bioresource Technology 99(5): 1125–1130. DOI: 10.1016/j.biortech.2007.02.024.
- [14] R. Fréty, M. Da Graça C. Da Rocha, S. T. Brandão, L. A. Pontes, J. F. Padilha, L. E. P. Borges, andW. A. Gonzalez, (2011) “Cracking and hydrocracking of triglycerides for renewable liquid fuels: Alternative processes to transesterification" Journal of the Brazilian Chemical Society 22(7): 1206–1220. DOI: 10.1590/S0103-50532011000700003.
- [15] N. A. Negm, A. M. Rabie, and E. A. Mohammed, (2018) “Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation" Applied Catalysis B: Environmental 239: 36–45. DOI: 10.1016/j.apcatb.2018.07.070.
- [16] J.-G. Na, J. K. Han, Y.-K. Oh, J.-H. Park, T. S. Jung, S. S. Han, H. C. Yoon, S. H. Chung, J.-N. Kim, and C. H. Ko, (2012) “Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel" Catalysis Today 185(1): 313–317. DOI: 10.1016/j.cattod.2011.08.009.
- [17] T. Morgan, E. Santillan-Jimenez, A. E. Harman-Ware, Y. Ji, D. Grubb, and M. Crocker, (2012) “Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts" Chemical Engineering Journal 189-190: 346–355. DOI: 10.1016/j.cej.2012.02.027.
- [18] J. G. Immer, M. J. Kelly, and H. H. Lamb, (2010) “Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids" Applied Catalysis A: General 375(1): 134–139. DOI: 10.1016/j.apcata.2009.12.028.
- [19] D. Li, H. Xin, X. Du, X. Hao, Q. Liu, and C. Hu, (2015) “Recent advances for the production of hydrocarbon biofuel via deoxygenation progress" Science Bulletin 60(24): 2096–2106. DOI: 10.1007/s11434-015-0971-0.
- [20] H.-S. Roh, I.-H. Eum, D.-W. Jeong, B. E. Yi, J.-G. Na, and C. H. Ko, (2011) “The effect of calcination temperature on the performance of Ni/MgO-Al 2O3 catalysts for decarboxylation of oleic acid" Catalysis Today 164(1): 457–460. DOI: 10.1016/j.cattod.2010.10.048.
- [21] D. Chen, L. Yin, H. Wang, and P. He, (2014) “Pyrolysis technologies for municipal solid waste: A review" Waste Management 34(12): 2466–2486. DOI: 10.1016/j.wasman.2014.08.004.
- [22] S. Da Mota, A. Mancio, D. Lhamas, D. De Abreu, M. Da Silva,W. Dos Santos, D. De Castro, R. De Oliveira, M. Araújo, L. E. P. Borges, and N. Machado, (2014) “Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant" Journal of Analytical and Applied Pyrolysis 110(1): 1–11. DOI: 10.1016/j.jaap.2014.06.011.
- [23] R. Hafriz, I. N. Shafizah, N. Arifin, A. Salmiaton, R. Yunus, Y. T. Yap, and A. Shamsuddin, (2021) “Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil" Renewable Energy 178: 128–143.
- [24] C. H. Ko, S. H. Park, J.-K. Jeon, D. J. Suh, K.-E. Jeong, and Y.-K. Park, (2012) “Upgrading of biofuel by the catalytic deoxygenation of biomass" Korean Journal of Chemical Engineering 29(12): 1657–1665. DOI: 10.1007/s11814-012-0199-5.
- [25] R. Hafriz, I. Nor Shafizah, A. Salmiaton, N. Arifin, R. Yunus, Y. Taufiq Yap, and S. Abd Halim, (2020) “Comparative study of transition metal-doped calcined Malaysian dolomite catalysts for WCO deoxygenation reaction" Arabian Journal of Chemistry 13(11): 8146–8159. DOI: 10.1016/j.arabjc.2020.09.046.
- [26] Y. Fang, L. Yin, H. Yang, X. Gong, Y. Chen, and H. Chen, (2021) “Catalytic mechanisms of potassium salts on pyrolysis of -O-4 type lignin model polymer based on DFT study" Proceedings of the Combustion Institute 38(3): 3969–3976. DOI: 10.1016/j.proci.2020.07.038.
- [27] S. Thangalazhy-Gopakumar,W. M. A. Al-Nadheri, D. Jegarajan, J. Sahu, N. Mubarak, and S. Nizamuddin, (2015) “Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production" Bioresource Technology 178: 65–69. DOI: 10.1016/j.biortech.2014.09.068.
- [28] L. Li, K. Quan, J. Xu, F. Liu, S. Liu, S. Yu, C. Xie, B. Zhang, and X. Ge, (2014) “Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst" Fuel 123: 189–193. DOI: 10.1016/j.fuel.2014.01.049.
- [29] L. E. Oi, M.-Y. Choo, H. V. Lee, H. C. Ong, S. B. A. Hamid, and J. C. Juan, (2016) “Recent advances of titanium dioxide (TiO2) for green organic synthesis" RSC Advances 6(110): 108741–108754. DOI: 10.1039/c6ra22894a.
- [30] F. H. Kamil, A. Salmiaton, R. Hafriz, I. R. Hussien, and R. Omar, (2020) “Characterization and application of molten slag as catalyst in pyrolysis of waste cooking oil" Bulletin of Chemical Reaction Engineering Catalysis 15(1): 119–127. DOI: 10.9767/bcrec.15.1.3973.119-127.
- [31] R. Hafriz, I. Nor Shafizah, N. Arifin, A. Maisarah, A. Salmiaton, and A. Shamsuddin, (2022) “Comparative, reusability and regeneration study of potassium oxide-based catalyst in deoxygenation reaction of WCO" Energy Conversion and Management: X 13: DOI: 10.1016/j.ecmx.2021.100173.