REFERENCES
- [1] S. Ahmad, A. Ullah, M. Partohaghighi, S. Saifullah, A. Akgul, and F. Jarad, (2021) “Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model" AIMS Math 7(3): 4778–4792. DOI:10.3934/math.2022265.
- [2] I. Zada, M. Naeem Jan, N. Ali, D. Alrowail, K. Sooppy Nisar, and G. Zaman, (2021) “Mathematical analysis of hepatitis B epidemic model with optimal control" Advances in Difference Equations 2021(1): 1–29. DOI:10.1186/s13662-021-03607-2.
- [3] T. S. Shaikh, N. Fayyaz, N. Ahmed, N. Shahid, M. Rafiq, I. Khan, and K. S. Nisar, (2021) “Numerical study for epidemic model of hepatitis-B virus" The European Physical Journal Plus 136(4): 1–22. DOI: 10.1140/epjp/s13360-021-01248-8.
- [4] L. Xuan, S. Ahmad, A. Ullah, S. Saifullah, A. Akgul, and H. Qu, (2022) “Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model" Chaos, Solitons & Fractals 159: 112113. DOI: 10.1016/j.chaos.2022.112113.
- [5] R. T. Alqahtani, S. Ahmad, and A. Akgul, (2021) “Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense" Mathematics 9(19): 2370. DOI: 10.3390/math9192370.
- [6] C. Xu, S. Saifullah, A. Ali, et al., (2022) “Theoretical and numerical aspects of Rubella disease model involving fractal fractional exponential decay kernel" Results in Physics 34: 105287. DOI: 10.1016/j.rinp.2022.105287.
- [7] M. Higazy, S. A. Alsallami, S. Abdel-Khalek, and A. El-Mesady, (2022) “Dynamical and structural study of a generalized Caputo fractional order Lotka-Volterra model" Results in Physics 37: 105478. DOI: 10.1016/j.rinp.2022.105478.
- [8] O. J. Peter, A. S. Shaikh, M. O. Ibrahim, K. S. Nisar, D. Baleanu, I. Khan, and A. I. Abioye, (2021) “Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator": DOI: 10.32604/cmc.2020.012314.
- [9] A. Mezouaghi, S. Djillali, A. Zeb, and K. S. Nisar, (2022) “Global proprieties of a delayed epidemic model with partial susceptible protection" Mathematical Biosciences and Engineering 19(1): 209–224. DOI: 10.3934/mbe.2022011.
- [10] M. Hashemi, (2018) “Invariant subspaces admitted by fractional differential equations with conformable derivatives" Chaos, Solitons & Fractals 107: 161–169. DOI: 10.1016/j.chaos.2018.01.002.
- [11] H. Rezazadeh, (2018) “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity" Optik 167: 218–227. DOI: 10.1016/j.ijleo.2018.04.026.
- [12] S. Kheybari, M. T. Darvishi, and M. S. Hashemi, (2020) “A semi-analytical approach to Caputo type timefractional modified anomalous sub-diffusion equations" Applied Numerical Mathematics 158: 103–122. DOI: 10.1016/j.apnum.2020.07.023.
- [13] M. Hashemi, (2021) “A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative" Chaos, Solitons & Fractals 152: 111367. DOI: 10.1016/j.chaos.2021.111367.
- [14] M. Hashemi, M. ˙Inç, and M. Bayram, (2019) “Symmetry properties and exact solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation" Revista mexicana de fisica 65(5): 529–535. DOI: 10.31349/RevMexFis.65.529.
- [15] H. Rezazadeh, A. Zafar, M. Hashemi, and E. Tala-Tebue, (2020) “New exact solution of the conformable Gilson–Pickering equation using the new modified Kudryashov’s method" International Journal of Modern Physics B 34(18): 2050161. DOI: 10.1142/S0217979220501611.
- [16] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation" Modern Physics Letters B 33(17): 1950196. DOI: 10.1142/S0217984919501963.
- [17] S. Pashayi, M. S. Hashemi, and S. Shahmorad, (2017) “Analytical lie group approach for solving fractional integro-differential equations" Communications in Nonlinear Science and Numerical Simulation 51: 66–77. DOI: 10.1016/j.cnsns.2017.03.023.
- [18] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2015) “Exact solutions for the fractional differential equations by using the first integral method" Nonlinear engineering 4(1): 15–22. DOI: 10.1515/nleng-2014-0018.
- [19] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [20] I. Pan and S. Das. Intelligent fractional order systems and control: an introduction. 438. Springer, 2012.
- [21] M. S. Hashemi and D. Baleanu. Lie symmetry analysis of fractional differential equations. Chapman and Hall/CRC, 2020.
- [22] M. Hashemi and D. Baleanu, (2016) “Lie symmetry analysis and exact solutions of the time fractional gas dynamics equation":
- [23] A. Momoh, M. Ibrahim, I. Uwanta, and S. Manga, (2013) “Mathematical model for control of measles epidemiology" International Journal of Pure and Applied Mathematics 87(5): 707–718. DOI: 10.12732/ijpam.v87i5.4.
- [24] O. A. Arqub and A. El-Ajou, (2013) “Solution of the fractional epidemic model by homotopy analysis method" Journal of King Saud University-Science 25(1): 73–81. DOI: 10.1016/j.jksus.2012.01.003.
- [25] Ritu and Y. Gupta, (2021) “Numerical analysis approach for models of COVID-19 and other epidemics" International Journal of Modeling, Simulation, and Scientific Computing 12(03): 2041003. DOI: 10.1142/S1793962320410032.
- [26] S. Saifullah, A. Ali, K. Shah, and C. Promsakon, (2022) “Investigation of fractal fractional nonlinear Drinfeld–Sokolov–Wilson system with non-singular operators" Results in Physics 33: 105145. DOI: 10.1016/j.rinp.2021.105145.
- [27] Y.-K. Ma,W. K.Williams, V. Vijayakumar, K. S. Nisar, and A. Shukla, (2022) “Results on Atangana-Baleanu fractional semilinear neutral delay integro-differential systems in Banach space" Journal of King Saud University-Science 34(6): 102158. DOI: 10.1016/j.jksus.2022.102158.
- [28] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A.-H. Abdel-Aty, M. Mahmoud, and E. E. Mahmoud, (2022) “A note on existenceand approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality" Results in Physics: 105647. DOI: 10.1016/j.rinp.2022.105647.
- [29] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, and A. Shukla, (2022) “A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay" Chaos, Solitons & Fractals 157: 111916. DOI: 10.1016/j.chaos.2022.111916.
- [30] M. Alesemi, N. Iqbal, and T. Botmart, (2022) “Novel analysis of the fractional-order system of non-linear partial differential equations with the exponential-decay kernel" Mathematics 10(4): 615. DOI: 10.3390/math10040615.
- [31] N. H. Aljahdaly, R. P. Agarwal, R. Shah, and T. Botmart, (2021) “Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators" Mathematics 9(18): 2326. DOI: 10.3390/math9182326.
- [32] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, and M. A. El-Shorbagy, (2022) “Some novel fractional integral inequalities over a new class of generalized convex function" Fractal and Fractional 6(1): 42. DOI: 10.3390/fractalfract6010042.
- [33] D. Ding, Q. Ma, and X. Ding, (2013) “A non-standard finite difference scheme for an epidemic model with vaccination" Journal of Difference Equations and Applications 19(2): 179–190. DOI: 10.1080/10236198.2011.614606.
- [34] W. E. Eyaran, S. Osman, and M. Wainaina, (2019) “Modelling and analysis of seir with delay differential equation" Global Journal of Pure and Applied Mathematics 15(4): 365–382.
- [35] A. Zeb, M. Khan, G. Zaman, S. Momani, and V. S. Ertürk, (2014) “Comparison of numerical methods of the SEIR epidemic model of fractional order" Zeitschrift für Naturforschung A 69(1-2): 81–89. DOI: 10.5560/ZNA.2013-0073.
- [36] N. Piovella, (2020) “Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic" Chaos, Solitons & Fractals 140: 110243. DOI: 10.1016/j.chaos.2020.110243.
- [37] S. J. Weinstein, M. S. Holland, K. E. Rogers, and N. S. Barlow, (2020) “Analytic solution of the SEIR epidemic model via asymptotic approximant" Physica D: nonlinear phenomena 411: 132633. DOI: 10.1016/j.physd.2020.132633.
- [38] K. Heng and C. L. Althaus, (2020) “The approximately universal shapes of epidemic curves in the Susceptible-Exposed-Infectious-Recovered (SEIR) model" Scientific Reports 10(1): 1–6. DOI: 10.1038/s41598-020-76563-8.
- [39] A. Das, A. Dhar, S. Goyal, A. Kundu, and S. Pandey, (2021) “COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies" Chaos, Solitons & Fractals 144: 110595. DOI: 10.1016/j.chaos.2020.110595.
- [40] H. M. Youssef, N. A. Alghamdi, M. A. Ezzat, A. A. El-Bary, and A. M. Shawky, (2020) “A modified SEIR model applied to the data of COVID-19 spread in Saudi Arabia" AIP advances 10(12): 125210. DOI: 10.1063/5.0029698.
- [41] A. Atangana, (2017) “Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system" Chaos, solitons & fractals 102: 396–406. DOI: 10.1016/j.chaos.2017.04.027.