REFERENCES
- [1] M. S. Hashemi and D. Baleanu. Lie symmetry analysis of fractional differential equations. Chapman and Hall/CRC, 2020.
- [2] I. Podlubny, (1999) “An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications" Math. Sci. Eng 198: 340.
- [3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations. 204.elsevier, 2006.
- [4] M. Inc, A. Yusuf, A. Isa Aliyu, and M. Hashemi, (2018) “Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time- and constant-dependent coefficients" European Physical Journal Plus 133(5): DOI: 10.1140/epjp/i2018-11989-8.
- [5] M. S. Hashemi, A. Haji-Badali, and P. Vafadar, (2014) “Group invariant solutions and conservation laws of the fornberg- whitham equation" Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 69(8-9): 489–496. DOI: 10.5560/ZNA.2014-0037.
- [6] A. Akbulut, M. Sajjad Hashemi, and H. Rezazadeh, (2021) “New conservation laws and exact solutions of coupled Burgers’ equation"Waves in Random and Complex Media: DOI: 10.1080/17455030.2021.1979691.
- [7] M. Hashemi, (2018) “Some new exact solutions of (2+1)- dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative" Optical and Quantum Electronics 50(2): DOI: 10 .1007/s11082-018-1343-1.
- [8] R. Gazizov and A. Kasatkin, (2013) “Construction of exact solutions for fractional order differential equations by the invariant subspace method" Computers and Mathematics with Applications 66(5): 576–584. DOI: 10.1016/j.camwa.2013.05.006.
- [9] R. Sahadevan and T. Bakkyaraj, (2015) “Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations" Fractional Calculus and Applied Analysis 18(1): 146–162. DOI: 10.1515/fca-2015-0010.
- [10] A. Zafar, M. Raheel, K. Hosseini, M. Mirzazadeh, S. Salahshour, C. Park, and D. Y. Shin, (2021) “Diverse approaches to search for solitary wave solutions of the fractional modified Camassa–Holm equation" Results in
Physics 31: DOI: 10.1016/j.rinp.2021.104882.
- [11] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gard-ner equation" Modern Physics Letters B 33(17): DOI: 10.1142/S0217984919501963.
- [12] M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, and A. Bekir, (2019) “New Optical Soliton Solutions of the Perturbed Fokas-Lenells Equation" Communications in Theoretical Physics 71(11): 1275–1280. DOI: 10.1088/0253-6102/71/11/1275.
- [13] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2016) “Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method" Boletim da Sociedade Paranaense de Matematica 34(2): 213–229. DOI: 10.5269/bspm.v34i2.25501.
- [14] H. Rezazadeh, (2018) “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity" Optik 167: 218–227. DOI: 10.1016/j.ijleo.2018.04.026.
- [15] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [16] S. Abbasbandy, E. Shivanian, K. H. AL-Jizani, and S. N. Atluri, (2021) “Pseudospectral meshless radial point interpolation for generalized biharmonic equation subject to simply supported and clamped boundary conditions" Engineering Analysis with Boundary Elements 125: 23–32. DOI: 10.1016/j.enganabound.2021.01.004.
- [17] S. Abbasbandy, E. Shivanian, and K. H. AL-Jizani, (2021) “On the analysis of a kind of nonlinear Sobolev equation through locally applied pseudo-spectral meshfree radial point interpolation" Numerical Methods for Partial Differential Equations 37(1): 462–478. DOI: 10.1002/num.22536.
- [18] M. Hashemi and A. Akgül, (2021) “On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods" Engineering with Computers 37(2): 1147–1158. DOI: 10.1007/s00366-019-00876-0.
- [19] M. Hashemi, (2021) “Numerical study of the onedimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method" Engineering with Computers 37(4): 3397–3407. DOI: 10.1007/s00366-020-01001-2.
- [20] M. S. Hashemi, E. Darvishi, and D. Baleanu, (2016) “A geometric approach for solving the density-dependent diffusion Nagumo equation" Advances in Difference Equations 2016(1): DOI: 10.1186/s13662-016-0818-2.
- [21] M. Hajiketabi and S. Abbasbandy, (2018) “The combination of meshless method based on radial basis functions with a geometric numerical integration method for solving partial differential equations: Application to the heat equation" Engineering Analysis with Boundary Elements 87: 36–46. DOI: 10.1016/j.enganabound.2017.11.008.
- [22] L. N. Trefethen. Spectral methods in MATLAB. SIAM, 2000.
- [23] S. Kheybari, M. T. Darvishi, and M. S. Hashemi, (2019) “Numerical simulation for the space-fractional diffusion equations" Applied Mathematics and Computation 348: 57–69. DOI: 10.1016/j.amc.2018.11.041.
- [24] W. Bao, Y. Feng, and C. Su, (2022) “UNIFORM ERROR BOUNDS OF TIME-SPLITTING SPECTRAL METHODS FOR THE LONG-TIME DYNAMICS OF THE NONLINEAR KLEIN–GORDON EQUATION WITH WEAK NONLINEARITY" Mathematics of Computation 91(334): 811–842. DOI: 10.1090/mcom/3694.
- [25] S. Noeiaghdam, D. Sidorov, A.-M. Wazwaz, N. Sidorov, and V. Sizikov, (2021) “The numerical validation of the adomian decomposition method for solving volterra integral equation with discontinuous kernels using the cestac method" Mathematics 9(3): 1–15. DOI: 10.3390/math9030260.
- [26] S. Rashid, K. T. Kubra, and J. L. G. Guirao, (2021) “Construction of an approximate analytical solution for multi-dimensional fractional zakharov–kuznetsov equation via aboodh adomian decomposition method" Symmetry 13(8): DOI: 10.3390/sym13081542.
- [27] T.-T. Lu andW.-Q. Zheng, (2021) “Adomian decomposition method for first order PDEs with unprescribed data" Alexandria Engineering Journal 60(2): 2563–2572. DOI: 10.1016/j.aej.2020.12.021.
- [28] O. González-Gaxiola and A. Biswas, (2019) “Optical solitons with Radhakrishnan–Kundu–Lakshmanan equation by Laplace–Adomian decomposition method" Optik 179: 434–442. DOI: 10.1016/j.ijleo.2018.10.173.
- [29] W. Qiu, D. Xu, and J. Guo, (2021) “Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation" Applied Mathematics and Computation 392: DOI: 10.1016/j.amc.2020.125693.
- [30] W. Qiu, D. Xu, and J. Guo, (2021) “The Crank-Nicolsontype Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel" Applied Numerical Mathematics 159: 239–258. DOI: 10.1016/j.apnum.2020.09.011.
- [31] S.-J. Liao, (1997) “A kind of approximate solution technique which does not depend upon small parameters - II. An application in fluid mechanics" International Journal of Non-Linear Mechanics 32(5): 815–822. DOI: 10.1016/s0020-7462(96)00101-1.
- [32] S. Liao, (2004) “On the homotopy analysis method for nonlinear problems" Applied Mathematics and Computation 147(2): 499–513. DOI: 10.1016/S0096-3003(02)00790-7.
- [33] S. Saratha, G. Sai Sundara Krishnan, and M. Bagyalakshmi, (2021) “Analysis of a fractional epidemic model by fractional generalised homotopy analysis method using modified Riemann - Liouville derivative" Applied Mathematical Modelling 92: 525–545. DOI: 10.1016/j.apm.2020.11.019.
- [34] L. Noeiaghdam, S. Noeiaghdam, and D. Sidorov. “Dynamical control on the homotopy analysis method for solving nonlinear shallow water wave equation”. In: 1847. 1. Cited by: 4; All Open Access, Bronze Open Access. 2021. DOI: 10.1088/1742-6596/1847/1/012010.
- [35] H. Jafari, J. G. Prasad, P. Goswami, and R. S. Dubey, (2021) “SOLUTION of the LOCAL FRACTIONAL GENERALIZED KDV EQUATION USING HOMOTOPY ANALYSIS METHOD" Fractals 29(5): DOI: 10.1142/S0218348X21400144.
- [36] P. Jain, M. Kumbhakar, and K. Ghoshal, (2022) “Application of homotopy analysis method to the determination of vertical sediment concentration distribution with shearinduced diffusivity" Engineering with Computers 38: 2609–2628. DOI: 10.1007/s00366-021-01491-8.
- [37] A. Khaliq and E. Twizell, (1987) “A Family of Second Order Methods for Variable Coefficient Fourth Order Parabolic Partial Differential Equations" International Journal of Computer Mathematics 23(1): 63–76. DOI: 10.1080/00207168708803608.
- [38] M. Dehghan and J. Manafian, (2009) “The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method" Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 64(7-8): 420–430. DOI: 10.1515/zna-2009-7-803.
- [39] C. Andrade and S. McKee, (1977) “High accuracy A.D.I. methods for fourth order parabolic equations with variable coefficients" Journal of Computational and Applied Mathematics 3(1): 11–14. DOI: 10.1016/0771-050X(77)90019-5.
- [40] J. Biazar and H. Ghazvini, (2007) “He’s variational iteration method for fourth-order parabolic equations" Computers and Mathematics with Applications 54(7-8): 1047–1054. DOI: 10.1016/j.camwa.2006.12.049.
- [41] A.-M. Wazwaz, (2001) “Analytic treatment for variable coefficient fourth-order parabolic partial differential equations" Applied Mathematics and Computation 123(2): 219–227. DOI: 10.1016/S0096-3003(00)00070-9.