REFERENCES
- [1] R. Ellahi, S. T. Mohyud-Din, U. Khan, et al., (2018) “Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method" Results in physics 8: 114–120. DOI: 10.1016/j.rinp.2017.11.023.
- [2] M. Mamat, S. Syouri, I. M. Alghrouz, I. M. Sulaiman, S. F. Sufahani, and P. Quds, (2020) “Conformable fractional differential transform method for solving fractional derivatives" Int. J. Adv. Sci. Technol 29: 1734–1743.
- [3] L. Song and W. Wang, (2013) “A new improved Adomian decomposition method and its application to fractional differential equations" Applied Mathematical Modelling 37(3): 1590–1598. DOI: 10.1016/j.apm.2012.03.016.
- [4] Q. Feng, (2018) “A new approach for seeking coefficient function solutions of conformable fractional partial differential equations based on the Jacobi elliptic equation" Chinese Journal of Physics 56(6): 2817–2828. DOI:10.1016/j.cjph.2018.08.006.
- [5] A. Bhrawy, M. Tharwat, and A. Yildirim, (2013) “A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations" Applied Mathematical Modelling 37(6): 4245–4252. DOI: 10.1016/j.apm.2012.08.022.
- [6] M. Senol, L. Akinyemi, A. Ata, and O. S. Iyiola, (2021) “Approximate and generalized solutions of conformable type Coudrey–Dodd–Gibbon–Sawada–Kotera equation" International Journal of Modern Physics B 35(02): 2150021. DOI: 10.1142/S0217979221500211.
- [7] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2015) “Exact solutions for the fractional differential equations by using the first integral method" Nonlinear engineering 4(1): 15–22. DOI: 10.1515/nleng-2014-0018.
- [8] O. A. Arqub and A. El-Ajou, (2013) “Solution of the fractional epidemic model by homotopy analysis method" Journal of King Saud University-Science 25(1): 73–81. DOI: 10.1016/j.jksus.2012.01.003.
- [9] B. Ghanbari, K. S. Nisar, and M. Aldhaifallah, (2020) “Abundant solitary wave solutions to an extended nonlinear Schrodinger’s equation with conformable derivative using an efficient integration method" Advances in Difference Equations 2020(1): 1–25. DOI: 10.1186/s13662-020-02787-7.
- [10] H. Aminikhah, A. H. R. Sheikhani, and H. Rezazadeh, (2016) “Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method" Boletim da sociedade paranaense de matemática 34(2): 213–229. DOI: 10.5269/bspm.v34i2.25501.
- [11] M. S. Hashemi, M. Inc, and A. Yusuf, (2020) “On three-dimensional variable order time fractional chaotic system with nonsingular kernel" Chaos, Solitons & Fractals 133: 109628. DOI: 10.1016/j.chaos.2020.109628.
- [12] Y. Salehi, M. T. Darvishi, andW. E. Schiesser, (2018) “Numerical solution of space fractional diffusion equation by the method of lines and splines" Applied Mathematics and Computation 336: 465–480. DOI: 10.1016/j.amc.2018.04.053.
- [13] W. Satsanit, (2020) “On the solution of Wave-Schrodinger equation." Journal of Nonlinear Sciences & Applications (JNSA) 13(4):
- [14] S. Al-Ahmada, I. M. Sulaimana, M. A. A. Nawib, M. Mamata, and M. Z. Ahmadc, “Analytical solution of systems of Volterra integro-differential equations using modified differential transform method": DOI: 10.22436/JMCS.026.01.01.
- [15] X.-L. Yina, S.-X. Konga, Y.-Q. Liua, and X.-T. Zhengb, “New scheme for nonlinear Schrodinger equations with vari-able coefficients":
- [16] M. M. Khater, (2021) “Diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation" Modern Physics Letters B 35(13): 2150220. DOI: 10.1142/S0217984921502201.
- [17] M. M. Khater, S. Elagan, M. El-Shorbagy, S. Alfalqi, J. Alzaidi, and N. A. Alshehri, (2021) “Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation" Communications in Theoretical Physics 73(9): 095003. DOI: 10.1088/1572-9494/ac049f.
- [18] M. M. Khater and D. Lu, (2021) “Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation" Modern Physics Letters B 35(19): 2150324. DOI: 10.1142/S0217984921503243.
- [19] M. M. Khater, (2021) “Abundant breather and semianalytical investigation: On high-frequency waves’ dynamics in the relaxation medium" Modern Physics Letters B 35(22): 2150372. DOI: 10.1142/S0217984921503723.
- [20] M. M. Khater, (2021) “Diverse bistable dark novel explicit wave solutions of cubic–quintic nonlinear Helmholtz model" Modern Physics Letters B 35(26): 2150441. DOI: 10.1142/S0217984921504418.
- [21] M. M. Khater, (2021) “Diverse bistable dark novel explicit wave solutions of cubic–quintic nonlinear Helmholtz model" Modern Physics Letters B 35(26): 2150441. DOI: 10.1142/S0217984921504418.
- [22] M. M. Khater, T. A. Nofal, H. Abu-Zinadah, M. S. Lotayif, and D. Lu, (2021) “Novel computational and accurate numerical solutions of the modified Benjamin–Bona–Mahony (BBM) equation arising in the optical illusions field" Alexandria Engineering Journal 60(1): 1797–1806. DOI: 10.1016/j.aej.2020.11.028.
- [23] M. M. Khater, (2021) “Numerical simulations of Zakharov’s (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves" Modern Physics Letters B 35(31): 2150480. DOI: 10.1142/S0217984921504807.
- [24] M. M. Khater, M. S. Mohamed, and R. A. Attia, (2021) “On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equation" Chaos, Solitons & Fractals 144: 110676. DOI: 10.1016/j.chaos.2021.110676.
- [25] J. Zhang, D. Lu, S. A. Salama, and M. M. Khater, (2022) “Accurate demonstrating of the interactions of two long waves with different dispersion relations: Generalized Hirota–Satsuma couple KdV equation" AIP Advances 12(2): 025015. DOI: 10.1063/5.0084588.
- [26] M. M. Khater, A. E.-S. Ahmed, and M. El-Shorbagy, (2021) “Abundant stable computational solutions of Atangana–Baleanu fractional nonlinear HIV-1 infection of CD4+ T-cells of immunodeficiency syndrome" Results in Physics 22: 103890. DOI: 10.1016/j.rinp.2021.103890.
- [27] M. M. Khater, A. E.-S. Ahmed, S. Alfalqi, J. Alzaidi, S. Elbendary, and A. M. Alabdali, (2021) “Computational and approximate solutions of complex nonlinear Fokas–Lenells equation arising in optical fiber" Results in Physics 25: 104322. DOI: 10 .1016/j.rinp.2021.104322.
- [28] M. M. Khater, A. Mousa, M. El-Shorbagy, and R. A. Attia, (2021) “Analytical and semi-analytical solutions for Phi-four equation through three recent schemes" Results in Physics 22: 103954. DOI: 10.1016/j.rinp.2021.103954.
- [29] M. M. Khater, K. S. Nisar, and M. S. Mohamed, (2021) “Numerical investigation for the fractional nonlinear spacetime telegraph equation via the trigonometric Quintic B-spline scheme" Mathematical Methods in the Applied Sciences 44(6): 4598–4606. DOI: 10.1002/mma.7052.
- [30] U. Afzal, N. Raza, and I. G. Murtaza, (2019) “On soliton solutions of time fractional form of Sawada–Kotera equation" Nonlinear Dynamics 95(1): 391–405. DOI: 10.1007/s11071-018-4571-9.
- [31] M. Khater, R. A. Attia, S. K. Elagan, and F. S. Bayones, (2021) “Analytical and semi analytical solutions of the internal waves of deep-stratified fluids" Thermal Science 25(Spec. issue 2): 227–232. DOI: 10.2298/TSCI21S2227K.
- [32] M. M. Khater, S. Anwar, K. U. Tariq, and M. S. Mohamed, (2021) “Some optical soliton solutions to the perturbed nonlinear Schrodinger equation by modified Khater method" AIP Advances 11(2): 025130. DOI: 10.1063/5.0038671.
- [33] M. Al-Smadi, O. A. Arqub, and S. Momani, (2020) “Numerical computations of coupled fractional resonant Schrodinger equations arising in quantum mechanics under conformable fractional derivative sense" Physica Scripta 95(7): 075218. DOI: 10.1088/1402-4896/ab96e0.
- [34] A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Kumar, and S. Momani, (2019) “Solitary solutions for timefractional nonlinear dispersive PDEs in the sense of conformable fractional derivative" Chaos: An Interdisciplinary Journal of Nonlinear Science 29(9): 093102. DOI: 10.1063/1.5100234.
- [35] M. S. Hashemi and D. Baleanu, (2016) “Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line" Journal of Computational Physics 316: 10–20. DOI: 10.1016/j.jcp.2016.04.009.
- [36] M. S. Shehata, H. Rezazadeh, E. H. Zahran, E. Tala-Tebue, and A. Bekir, (2019) “New optical soliton solutions of the perturbed Fokas-Lenells equation" Communications in Theoretical Physics 71(11): 1275. DOI: 10.1088/0253-6102/71/11/1275.
- [37] M. Khater and B. Ghanbari, (2021) “On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques" The European Physical Journal Plus 136(4): 1–28. DOI: 10.1140/epjp/s13360-021-01457-1.
- [38] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, (2014) “A new definition of fractional derivative" Journal of computational and applied mathematics 264: 65–70. DOI: 10.1016/j.cam.2014.01.002.
- [39] S. Qureshi, (2020) “Effects of vaccination on measles dynamics under fractional conformable derivative wit Liouville–Caputo operator" The European Physical Journal Plus 135(1): 63. DOI: 10.1140/epjp/s13360-020-00133-0.
- [40] H. A. Ghany, A.-A. Hyder, and M. Zakarya, (2020) “Exact solutions of stochastic fractional Korteweg de–Vries equation with conformable derivatives" Chinese Physics B 29(3): 030203. DOI: 10.1088/1674-1056/ab75c9.
- [41] F. Martinez, I. Martinez, M. K. Kaabar, R. Ortiz-Munuera, and S. Paredes, (2020) “Note on the conformable fractional derivatives and integrals of complex valued functions of a real variable" IAENG International Journal of Applied Mathematics 50(3): 609–615.
- [42] M. Darvishi, M. Najafi, and A.-M. Wazwaz, (2021) “Conformable space-time fractional nonlinear (1+1)-dimensional Schrodinger-type models and their traveling wave solutions" Chaos, Solitons & Fractals 150: 111187. DOI: 10.1016/j.chaos.2021.111187.
- [43] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [44] M. T. DARVISHI, M. NAJAFI, and B.-C. SHIN, (2021) “Conformable fractional sense of foam drainage equation and construction of its solutions" Journal of the Korean Society for Industrial and Applied Mathematics 25(3): 132–148.
- [45] M. T. Darvishi and M. Najafi, (2020) “Propagation of sech-type solutions for conformable fractional nonlinear Schrodinger models" Com. Meth. Sci. Eng 2(2): 35.
- [46] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation" Modern Physics Letters B 33(17): 1950196. DOI: 10.1142/S0217984919501963.
- [47] D. Kumar, G. C. Paul, A. R. Seadawy, and M. Darvishi, (2021) “A variety of novel closed-form soliton solutions to the family of Boussinesq-like equations with different types" Journal of Ocean Engineering and Science: DOI: 10.1016/j.joes.2021.10.007.
- [48] M. T. Darvishi, M. Najafi, and A.-M. Wazwaz, (2021) “Some optical soliton solutions of space-time conformable fractional Schrodinger-type models" Physica Scripta 96(6): 065213. DOI: 10.1088/1402-4896/abf269.
- [49] D. Zhao and M. Luo, (2017) “General conformable fractional derivative and its physical interpretation" Calcolo 54(3): 903–917. DOI: 10.1007/s10092-017-0213-8.
- [50] J.-H. He, (1999) “Homotopy perturbation technique" Computer methods in applied mechanics and engineering 178(3-4): 257–262.
- [51] H. Aminikhah, A. H. Refahi Sheikhani, and H. Rezazadeh, (2014) “Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations" Journal of Mathematical Modeling 2(1): 22–40.