- [1] S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz. “Robot assisted gait training with active leg exoskeleton (ALEX)”. In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008, 653–658. DOI: 10.1109/BIOROB.2008.4762885.
- [2] S. Hussain, S. Q. Xie, and P. K. Jamwal, (2013) “Control of a robotic orthosis for gait rehabilitation" Robotics and Autonomous Systems 61(9): 911–919. DOI: 10.1016/j.robot.2013.01.007.
- [3] P. Beyl, K. Knaepen, S. Duerinck, M. V. Damme, B. Vanderborght, R. Meeusen, and D. Lefeber, (2011) “Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait" Advanced Robotics 25(5): 513–535. DOI: 10.1163/016918611X558225.
- [4] S. Fisher, L. Lucas, and T. Thrasher, (2011) “RobotAssisted Gait Training for Patients with Hemiparesis Due to Stroke" Topics in stroke rehabilitation 18: 269–76. DOI: 10.1310/tsr1803-269.
- [5] T.-J. Yeh, M.-J. Wu, T.-J. Lu, F.-K. Wu, and C.-R. Huang, (2010) “Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis" Mechatronics 20(6): 686–697. DOI: 10.1016/j.mechatronics.2010.07.004.
- [6] D. Thinh and S.-i. Yamamoto, (2018) “Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation" Applied Sciences 8: 499. DOI: 10.3390/app8040499.
- [7] R. Q. van der Linde, (1999) “Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles" IEEE transactions on robotics and automation 15(4): 599–604. DOI: 10.1109/70.781963.
- [8] M. Wisse, A. L. Schwab, R. Q. van der Linde, and F. C. van der Helm, (2005) “How to keep from falling forward: Elementary swing leg action for passive dynamic walkers" IEEE Transactions on robotics 21(3): 393–401. DOI: 10.1109/TRO.2004.838030.
- [9] I. Mizuuchi, H. Waita, Y. Nakanishi, T. Yoshikai, M. Inaba, and H. Inoue. “Design and implementation of reinforceable muscle humanoid”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). 1. IEEE. 2004, 828–833. DOI: 10.1109/IROS.2004.1389455.
- [10] K. Kawashima, T. Sasaki, A. Ohkubo, T. Miyata, and T. Kagawa. “Application of robot arm using fiber knitted type pneumatic artificial rubber muscles”. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. 5. IEEE. 2004, 4937–4942. DOI: 10.1109/ROBOT.2004.1302500.
- [11] Y. Sodeyama, I. Mizuuchi, T. Yoshikai, Y. Nakanishi, and M. Inaba. “A shoulder structure of muscledriven humanoid with shoulder blades”. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2005, 4028–4033. DOI: 10.1109/IROS.2005.1545123.
- [12] T. G. Sugar, J. He, E. J. Koeneman, J. B. Koeneman, R. Herman, H. Huang, R. S. Schultz, D. Herring, J. Wanberg, S. Balasubramanian, et al., (2007) “Design and control of RUPERT: a device for robotic upper extremity repetitive therapy" IEEE transactions on neural systems and rehabilitation engineering 15(3): 336–346. DOI: 10.1109/TNSRE.2007.903903.
- [13] T.-Y. Choi and J.-J. Lee, (2009) “Control of manipulator using pneumatic muscles for enhanced safety" IEEE Transactions on Industrial Electronics 57(8): 2815– 2825. DOI: 10.1109/TIE.2009.2036632.
- [14] T. D. C. Thanh and K. K. Ahn, (2006) “Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network" Mechatronics 16(9): 577–587. DOI: 10.1016/j.mechatronics.2006.03.011.
- [15] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, (2014) “Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators" IEEE Transactions on Industrial Electronics 61(12): 6926–6937. DOI: 10.1109/TIE.2014.2316255.
- [16] S. Bembli, N. Haddad, and S. Belghith, (2021) “A Robust Model Free Terminal Sliding Mode with Gravity Compensation Control of a 2 DoF Exoskeleton-Upper Limb System": DOI: 10.1007/s40313-021-00687-z.
- [17] A. Mathias, M. Anila, and K. S. Sivanandan, (2021) “Comparison of SMC and PID Controllers for Pneumatically Powered Knee Orthosis" Journal of Control, Automation and Electrical Systems 32: DOI: 10.1007/ s40313-021-00775-0.
- [18] K. Xing, J. Huang, Y. Wang, J. Wu, Q. Xu, and J. He, (2010) “Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer" Control Theory & Applications, IET 4: 2058–2070. DOI: 10.1049/iet-cta.2009.0555.
- [19] J. Lilly and P. Quesada, (2004) “A two-input slidingmode controller for a planar arm actuated by four pneumatic muscle groups" IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(3): 349– 359. DOI: 10.1109/TNSRE.2004.831490.
- [20] J. Lilly and L. Yang, (2005) “Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration" IEEE Transactions on Control Systems Technology 13(4): 550–558. DOI: 10.1109/TCST.2005.847333.
- [21] L. Zhao, Q. Li, B. Liu, and H. Cheng, (2019) “Trajectory Tracking Control of a One Degree of Freedom Manipulator Based on a Switched Sliding Mode Controller With a Novel Extended State Observer Framework" IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(6): 1110–1118. DOI: 10.1109/TSMC.2017.2719057.
- [22] C. P. Vo, X. D. To, and K. K. Ahn, (2019) “A Novel Adaptive Gain Integral Terminal Sliding Mode Control Scheme of a Pneumatic Artificial Muscle System With Time-Delay Estimation" IEEE Access 7: 141133–141143. DOI: 10.1109/ACCESS.2019.2944197.
- [23] D. X. Ba and K. K. Ahn, (2015) “Indirect sliding mode control based on gray-box identification method for pneumatic artificial muscle" Mechatronics 32: 1–11. DOI: 10.1016/j.mechatronics.2015.09.005.
- [24] Q.-T. Dao and T.-K. L. Tri, (2022) “Discrete-time sliding mode control based on exponential reaching law of a pneumatic artificial muscle actuator" Journal of Mechanical Engineering (JMechE) 19(1): 221–238.
- [25] D. Thinh, L. Nguyen, and S.-i. Yamamoto, (2019) “Discrete-Time Fractional Order Integral Sliding Mode Control of an Antagonistic Actuator Driven by Pneumatic Artificial Muscles" Applied Sciences 9: 2503. DOI: 10.3390/app9122503.
- [26] R. Fellag, M. Hamerlain, S. Laghrouche, and N. Achour. “Adaptive discrete sliding mode control of a pneumatic artificial muscles robot”. In: 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). 2017, 1–6. DOI: 10.1109/ICEEB.2017.8192099.
- [27] Q.-T. Dao, T.-K. Le Tri, V.-A. Nguyen, and M.-L. Nguyen, (2022) “Discrete-time sliding mode control with power rate exponential reaching law of a pneumatic artificial muscle system" Control Theory and Technology 20(4): 514–524. DOI: 10.1007/s11768-022-00117-8.
- [28] H. Xu and P. Ioannou, (2003) “Robust adaptive control for a class of MIMO nonlinear systems with guaranteed error bounds" IEEE Transactions on Automatic Control 48(5): 728–742. DOI: 10.1109/TAC.2003.811250.
- [29] Y. Zhu, J. Qiao, and L. Guo, (2019) “Adaptive Sliding Mode Disturbance Observer-Based Composite Control With Prescribed Performance of Space Manipulators for Target Capturing" IEEE Transactions on Industrial Electronics 66(3): 1973–1983. DOI: 10.1109/TIE.2018.2838065.
- [30] W. Wang, D. Wang, Z. Peng, and T. Li, (2016) “Prescribed Performance Consensus of Uncertain Nonlinear Strict-Feedback Systems With Unknown Control Directions" IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(9): 1279–1286. DOI: 10.1109/TSMC.2015.2486751.
- [31] C. P. Bechlioulis and G. A. Rovithakis, (2008) “Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed Performance" IEEE Transactions on Automatic Control 53(9): 2090–2099. DOI: 10.1109/TAC.2008.929402.
- [32] Z. Li, X. Zhang, C.-Y. Su, and T. Chai, (2016) “Nonlinear Control of Systems Preceded by Preisach Hysteresis Description: A Prescribed Adaptive Control Approach" IEEE Transactions on Control Systems Technology 24(2): 451–460. DOI: 10.1109/TCST.2015.2441001.
- [33] G. Guo and D. Li, (2019) “Adaptive Sliding Mode Control of Vehicular Platoons With Prescribed Tracking Performance" IEEE Transactions on Vehicular Technology 68(8): 7511–7520. DOI: 10.1109/TVT.2019.2921816.
- [34] S. Wang, J. Na, and X. Ren, (2018) “RISE-Based Asymptotic Prescribed Performance Tracking Control of Nonlinear Servo Mechanisms" IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(12): 2359–2370. DOI: 10.1109/TSMC.2017.2769683.
- [35] E. Psomopoulou, A. Theodorakopoulos, Z. Doulgeri, and G. A. Rovithakis, (2015) “Prescribed Performance Tracking of a Variable Stiffness Actuated Robot" IEEE Transactions on Control Systems Technology 23(5): 1914–1926. DOI: 10.1109/TCST.2015.2394748.
- [36] H. J. Asl, T. Narikiyo, and M. Kawanishi. “Prescribed performance velocity field control of robotic exoskeletons with neural network”. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2017, 2704–2709. DOI: 10.1109/ROBIO.2017.8324828.
- [37] Y. Cao, J. Huang, and M. Zhang. “Prescribed Performance-based Chattering-free Tracking Control for Pneumatic Muscle Actuators”. In: 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). 2021, 355–360. DOI: 10.1109/CYBER53097.2021.9588137.
- [38] D. Reynolds, D. Repperger, C. Phillips, and G. Bandry, (2003) “Modeling the Dynamic Characteristics of Pneumatic Muscle" Annals of biomedical engineering 31: 310–7. DOI: 10.1114/1.1554921.
- [39] M. L. Nguyen, X. Chen, and F. Yang, (2018) “DiscreteTime Quasi-Sliding-Mode Control With Prescribed Performance Function and its Application to Piezo-Actuated Positioning Systems" IEEE Transactions on Industrial Electronics 65(1): 942–950. DOI: 10.1109/TIE.2017.2708024.
- [40] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz, (2005) “Patientcooperative strategies for robot-aided treadmill training: first experimental results" IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3): 380–394. DOI: 10.1109/TNSRE.2005.848628.