- [1] A. Ahmadpour, E. Mokaramian, and S. Anderson, (2021) “The effects of the renewable energies penetration on the surplus welfare under energy policy" Renewable Energy 164: 1171–1182. DOI: 10.1016/j.renene.2020.10.140.
- [2] D. Xia, S. Ba, and A. Ahmadpour, (2021) “Non– intrusive load disaggregation of smart home appliances using the IPPO algorithm and FHM model" Sustainable Cities and Society 67: 102731. DOI: 10.1016/j.scs.2021.102731.
- [3] R. H. Inman, H. T. Pedro, and C. F. Coimbra, (2013) “Solar forecasting methods for renewable energy integration" Progress in energy and combustion science 39(6): 535–576. DOI: 10.1016/j.pecs.2013.06.002.
- [4] E. Mokaramian, H. Shayeghi, F. Sedaghati, A. Safari, and H. H. Alhelou, (2021) “A CVaR-Robust-based multi-objective optimization model for energy hub considering uncertainty and E-fuel energy storage in energy and reserve markets" IEEE Access 9: 109447–109464. DOI: 10.1109/ACCESS.2021.3100336.
- [5] D. W. Van der Meer, J. Widén, and J. Munkhammar, (2018) “Review on probabilistic forecasting of photovoltaic power production and electricity consumption" Renewable and Sustainable Energy Reviews 81: 1484–1512. DOI: 10.1016/j.rser.2017.05.212.
- [6] E. Mokaramian, H. Shayeghi, F. Sedaghati, A. Safari, and H. H. Alhelou, (2022) “An optimal energy hub management integrated EVs and RES based on threestage model considering various uncertainties" IEEE Access 10: 17349–17365. DOI: 10.1109/ACCESS.2022.3146447.
- [7] E. Scolari, D. Torregrossa, J.-Y. Le Boudec, and M. Paolone. “Ultra-short-term prediction intervals of photovoltaic AC active power”. In: 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE. 2016, 1–8. DOI: 10.1109/PMAPS.2016.7764064.
- [8] Q. Ni, S. Zhuang, H. Sheng, G. Kang, and J. Xiao, (2017) “An ensemble prediction intervals approach for short-term PV power forecasting" Solar Energy 155: 1072–1083. DOI: 10.1016/j.solener.2017.07.052.
- [9] E. Scolari, F. Sossan, and M. Paolone, (2016) “Irradiance prediction intervals for PV stochastic generation in microgrid applications" Solar Energy 139: 116–129. DOI: 10.1016/j.solener.2016.09.030.
- [10] G. I. Nagy, G. Barta, S. Kazi, G. Borbély, and G. Simon, (2016) “GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach" International Journal of Forecasting 32(3): 1087–1093. DOI: 10.1016/j.ijforecast.2015.11.013.
- [11] M. J. Sanjari and H. Gooi, (2016) “Probabilistic forecast of PV power generation based on higher order Markov chain" IEEE Transactions on Power Systems 32(4): 2942–2952. DOI: 10.1109/TPWRS.2016.2616902.
- [12] H. Wang, H. Yi, J. Peng, G. Wang, Y. Liu, H. Jiang, and W. Liu, (2017) “Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network" Energy conversion and management 153: 409–422. DOI: 10.1016/j.enconman.2017.10.008.
- [13] A. Bracale, G. Carpinelli, and P. De Falco, (2016) “A probabilistic competitive ensemble method for short-term photovoltaic power forecasting" IEEE Transactions on Sustainable Energy 8(2): 551–560. DOI: 10.1109/TSTE.2016.2610523.
- [14] R. R. Appino, J. Á. G. Ordiano, R. Mikut, T. Faulwasser, and V. Hagenmeyer, (2018) “On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages" Applied energy 210: 1207– 1218. DOI: 10.1016/j.apenergy.2017.08.133.
- [15] A. Bracale, G. Carpinelli, and P. De Falco. “A Bayesian-based approach for the short-term forecasting of electrical loads in smart grids.: Part I: theoretical aspects”. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE. 2016, 121–128. DOI: 10.1109/SPEEDAM.2016.7526022.
- [16] V. Dordonnat, A. Pichavant, and A. Pierrot, (2016) “GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models" International journal of forecasting 32(3): 1005–1011. DOI: 10.1016/j.ijforecast.2015.11.010.
- [17] F. Ziel and B. Liu, (2016) “Lasso estimation for GEFCom2014 probabilistic electric load forecasting" International Journal of Forecasting 32(3): 1029–1037. DOI: 10.1016/j.ijforecast.2016.01.001.
- [18] H. Quan, D. Srinivasan, and A. Khosravi, (2013) “Short-term load and wind power forecasting using neural network-based prediction intervals" IEEE transactions on neural networks and learning systems 25(2): 303–315. DOI: 10.1109/TNNLS.2013.2276053.
- [19] H. Quan, D. Srinivasan, and A. Khosravi, (2014) “Uncertainty handling using neural network-based prediction intervals for electrical load forecasting" Energy 73: 916– 925. DOI: 10.1016/j.energy.2014.06.104.
- [20] Y. Wang, N. Zhang, Q. Chen, D. S. Kirschen, P. Li, and Q. Xia, (2017) “Data-driven probabilistic net load forecasting with high penetration of behind-the-meter PV" IEEE Transactions on Power Systems 33(3): 3255–3264. DOI: 10.1109/TPWRS.2017.2762599.
- [21] B. L. Cabrera and F. Schulz, (2017) “Forecasting generalized quantiles of electricity demand: A functional data approach" Journal of the American Statistical Association 112(517): 127–136. DOI: 10.1080/01621459.2016.1219259.
- [22] S. B. Taieb, R. Huser, R. J. Hyndman, and M. G. Genton, (2016) “Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression" IEEE Transactions on Smart Grid 7(5): 2448–2455. DOI: 10.1109/TSG.2016.2527820.
- [23] S. Arora and J. W. Taylor, (2016) “Forecasting electricity smart meter data using conditional kernel density estimation" Omega 59: 47–59. DOI: 10.1016/j.omega.2014.08.008.
- [24] S. Salcedo-Sanz, C. Casanova-Mateo, J. MuñozMarí, and G. Camps-Valls, (2014) “Prediction of daily global solar irradiation using temporal Gaussian processes" IEEE Geoscience and Remote Sensing Letters 11(11): 1936–1940. DOI: 10.1109/LGRS.2014.2314315.
- [25] I. Bilionis, E. M. Constantinescu, and M. Anitescu, (2014) “Data-driven model for solar irradiation based on satellite observations" Solar energy 110: 22–38. DOI: 10.1016/j.solener.2014.09.009.
- [26] P. Lauret, C. Voyant, T. Soubdhan, M. David, and P. Poggi, (2015) “A benchmarking of machine learning techniques for solar radiation forecasting in an insular context" Solar Energy 112: 446–457. DOI: 10.1016/j.solener.2014.12.014.
- [27] H. Sheng, J. Xiao, Y. Cheng, Q. Ni, and S. Wang, (2017) “Short-term solar power forecasting based on weighted Gaussian process regression" IEEE Transactions on Industrial Electronics 65(1): 300–308. DOI: 10.1109/TIE. 2017.2714127.
- [28] P. Lauret, M. David, and D. Calogine, (2012) “Nonlinear models for short-time load forecasting" Energy Procedia 14: 1404–1409. DOI: 10.1016/j.egypro.2011.12.1109.
- [29] P. Kou and F. Gao, (2014) “A sparse heteroscedastic model for the probabilistic load forecasting in energyintensive enterprises" International Journal of Electrical Power & Energy Systems 55: 144–154. DOI: 10.1016/j.ijepes.2013.09.002.
- [30] B. Dong, Z. Li, S. M. Rahman, and R. Vega, (2016) “A hybrid model approach for forecasting future residential electricity consumption" Energy and Buildings 117: 341–351. DOI: 10.1016/j.enbuild.2015.09.033.
- [31] F. McLoughlin, A. Duffy, and M. Conlon, (2013) “Evaluation of time series techniques to characterise domestic electricity demand" Energy 50: 120–130. DOI: 10.1016/j.energy.2012.11.048.
- [32] J. R. Lloyd, (2014) “GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes" International Journal of Forecasting 30(2): 369–374. DOI: 10.1016/j.ijforecast.2013.07.002.
- [33] E. Ela, A. Tuohy, R. Entriken, E. Lannoye, and R. Philbrick. “Using probabilistic renewable forecasts to determine reserve requirements”. In: Proceedings of the 7th Solar Integration Workshop. International Workshop on Integration of Solar Power into Power Systems, EPRI, Berlin, Germany. 2017, 24–25.
- [34] J. Sarshar, S. S. Moosapour, and M. Joorabian, (2017) “Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting" Energy 139: 680–693. DOI: 10.1016/j.energy.2017.07.138.
- [35] A. S. Al-Sumaiti, M. M. Salama, and M. El-Moursi, (2017) “Enabling electricity access in developing countries: A probabilistic weather driven house based approach" Applied Energy 191: 531–548. DOI: 10.1016/j.apenergy.2017.01.075.
- [36] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning. 4. 4. Springer, 2006.