- [1] H. Wu, Y. Xie, Y. Xu, Q. Wu, C. Yu, and J. Sun, (2022) “Resilient scheduling of MESSs and RCs for distribution system restoration considering the forced cut-off of wind power" Energy 244: 123081. DOI: 10.1016/j.energy.2021.123081.
- [2] A. Maomin, A. Junwei, S. Congcong, W. Qingze, Z. Shouqiang, and Z. Jiaming. “Research on Influencing Factors of Distribution Network Overhaul without Power Interruption Based on Analytic Hierarchy Process”. In: 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). IEEE. 2022, 1291–1295. DOI: 10.1109/ACPEE53904.2022.9783832.
- [3] X. Kong, C. Liu, Y. Shen, W. Hu, and T. Ma, (2020) “Power supply reliability evaluation based on big data analysis for distribution networks considering uncertain factors" Sustainable Cities and Society 63: 102483. DOI: 10.1016/j.scs.2020.102483.
- [4] Y. Liu, K. Ji, X. Fu, S. Wenrong, and H. Ren, (2019) “A review of the current situation of the development of distribution network strip operation robot technology" Power and Energy 40(4): 446–451.
- [5] Z. Qian, Y. Liu, and Z. Ye, (2021) “A review of the current situation and development of power distribution network strip operation" Power and Energy 42(1): 83–86.
- [6] Z. Su, K. Liu, X. Kui, B. Xiao, T. Liu, and P. Tang, (2017) “Status and development of power distribution non-stop operation technology" Power Supply 34(10): 60–66.
- [7] D. Wang, (2019) “Optimization of 110 kV transmission line design analysis" Doors and Windows (20): 153.
- [8] H. Tao, (2013) “Application and optimization of typical design schemes for 110 kV transmission lines" Enterprise Technology Development 32(Z1): 116–117.
- [9] X. Xie and Y. Tan, (2015) “Typical design scheme and optimization of 110 kV transmission line" Science and Technology Innovation and Application (32): 199.
- [10] W. M. Zeng, D. N. Liu, Y. Hu, J. P. Liu, X. G. Yang, and M. Fan, (2014) “Analysis of Low Carbon Influence Factors in Power Industry Based on the ISM" Applied Mechanics & Materials 675: 1721–1726. DOI: 10.4028/www.scientific.net/AMM.675-677.1721.
- [11] Y. Xu, K. Yang, and G. Zhao, (2021) “The influencing factors and hierarchical relationships of offshore wind power industry in China" Environmental Science and Pollution Research: 1–16. DOI: 10.1007/s11356-021-14275-w.
- [12] M. F. Ansari, R. K. Kharb, S. Luthra, S. L. Shimmi, and S. Chatterji, (2013) “Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique" Renewable and Sustainable Energy Reviews 27(nov.): 163–174. DOI: 10.1016/j.rser.2013.07.002.
- [13] R. Feng and D. Cha. “Research on Risk System in Power Market Based on ISM”. In: 2nd International Conference on Risk Management and Engineering. 2008.
- [14] X. C. A. B, S. X. D. A. B, T. Y. C, and Q. Q. Y. D, (2022) “Research on influencing factors of line loss rate of regional distribution network based on apriori-interpretative structural model" Energy Reports 8: 53–64. DOI: 10.1016/j.egyr.2022.03.048.
- [15] Z. Bertalan, J. Kiss, and Z. Á. Tamus. “Technical economic feasibility study on Live Line maintenance on Hungarian transmission network”. In: 2014 11th International Conference on Live Maintenance (ICOLIM). IEEE. 2014, 1–4. DOI: 10.1109/ICOLIM.2014.6934349.
- [16] J. Gao, L. Wang, G. Li, Y. Fang, B. Song, B. Xiao, and K. Liu, (2020) “Discharge of air gaps during ground potential live-line work on transmission lines" Electric Power Systems Research 187: 106519. DOI: 10.1016/j.epsr.2020.106519.
- [17] J. Gao, L. Wang, G. Li, S. Wu, B. Song, C. Xie, L. Liu, and T. Wang, (2022) “Discharge characteristics of ground potential live-line work air gaps in cup towers and double circuit towers" Energy Reports 8: 285–291. DOI: 10.1016/j.egyr.2022.02.119.
- [18] A. Carreira, E. Cherney, R. Christman, E. Cleckley, J. Kuffel, A. Phillips, and J. Varner, (2013) “Guidelines for establishing diagnostic procedures for live-line working of nonceramic insulators" IEEE transactions on power delivery 29(1): 126–130. DOI: 10.1109/TPWRD.2013.2267455.
- [19] G. Göcsei, B. Németh, B. G. Halász, and J. Meixner. “Development of a live-line technology for insulator changing”. In: 2017 12th International Conference on Live Maintenance (ICOLIM). IEEE. 2017, 1–5. DOI: 10.1109/ICOLIM.2017.7964105.
- [20] R. G. Rodriguez. “Innovative new live line tool and framing designs”. In: 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII). IEEE. 2017, 1–6. DOI: 10.1109/CONCAPAN.2017.8278495.
- [21] D. Szabó, G. Göcsei, B. Németh, C. Richárd, and L. Rácz. “Examination of clearances during high voltage live-line working”. In: 2019 IEEE Electrical Insulation Conference (EIC). IEEE. 2019, 104–107. DOI: 10.1109/EIC43217.2019.9046546.
- [22] N. Heuze. “Development for new heliborne baskets for live line work”. In: 2017 12th International Conference on Live Maintenance (ICOLIM). IEEE. 2017, 1–3. DOI: 10.1109/ICOLIM.2017.7964135.
- [23] J. Feng and W. Zhang, (2021) “An efficient rrt algorithm for motion planning of live-line maintenance robots" Applied Sciences 11(22): 10773. DOI: 10.3390/app112210773.
- [24] M. Zhu, T. Jiao, and H. Gong. “Comprehensive evaluation application analysis of the safety of distribution live work on 10 Kv”. In: 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Atlantis Press. 2015, 924–927.
- [25] W. Mcdermid and D. Swatek, (2014) “Experience with dielectric surfaces of FRP tools used in live line work" IEEE Transactions on Dielectrics and Electrical Insulation 21(6): 2415–2427. DOI: 10.1109/TDEI.2014.004527.
- [26] A. Zhou, Y. Zheng, G. Bai, Y. Li, H. Yao, E. Dong, Y. Feng, K. Wu, S. Wu, H. Zhang, et al. “Visual Servo Method for Power Distribution Live-line Operation Robot Based on Hand-eye System”. In: 2022 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE. 2022, 969–974. DOI: 10.1109/ICMA54519.2022.9856226.
- [27] S. Widlas. “Concept of installation of cable terminations on 110–400kV live line poles”. In: 2014 11th International Conference on Live Maintenance (ICOLIM). IEEE. 2014, 1–9. DOI: 10.1109/ICOLIM.2014.6934346.
- [28] L. Jia, X. Zhao, and Z. Zhang, (2021) “AISM-based study on the influencing factors of water conservancy project governance" China Rural Water Conservancy and Hydropower 5: 170–175+187.
- [29] W. Liu and L. Xu, (2021) “Identification of key fragility factors of manufacturing systems based on explanatory structural models and complex networks" Computer Integrated Manufacturing Systems 27(11): 3076–3092.
- [30] Y. Liang, H. Wang, and X. Zhao, (2022) “Analysis of factors affecting economic operation of electric vehicle charging station based on DEMATEL-ISM" Computers & Industrial Engineering 163: 107818. DOI: 10.1016/j.cie.2021.107818.
- [31] S. S. Kamble, A. Gunasekaran, and R. Sharma, (2020) “Modeling the blockchain enabled traceability in agriculture supply chain" International Journal of Information Management 52: 101967. DOI: 10.1016/j.ijinfomgt.2019.05.023.
- [32] S. Kumar, R. D. Raut, K. Nayal, S. Kraus, V. S. Yadav, and B. E. Narkhede, (2021) “To identify industry 4.0 and circular economy adoption barriers in the agriculture supply chain by using ISM-ANP" Journal of Cleaner Production 293: 126023. DOI: 10.1016/j.jclepro.2021.126023.
- [33] T. Tan, K. Chen, F. Xue, and W. Lu, (2019) “Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach" Journal of Cleaner Production 219: 949–959. DOI: 10.1016/j.jclepro.2019.02.141.
- [34] S. Shi, (2022) “Analysis of factors influencing employment quality of college graduates based on explanatory structural model" Henan Social Science 30(1): 112–118.
- [35] Y. Hu, T. Liu, K. Liu, X. Zuo, Z. Ma, B. Xiao, S. Li, X. Weng, S. Ling, J. Zhang, P. Tang, Z. Su, L. Wang, X. Lei, W. Zhang, and W. Yang. Technical guide for live working on distribution line. 2019.