- [1] I. Benito-González, M. del Mar Ortiz-Gimeno, A. López-Rubio, A. Martínez-Abad, A. GarridoFernández, and M. Martínez-Sanz, (2022) “Sustainable starch biocomposite films fully-based on white rice (Oryza sativa) agroindustrial by-products" Food and Bioproducts Processing 136: 47–58. DOI: 10.1016/j.fbp.2022.09.008.
- [2] M. J. Fabra, M. Martínez-Sanz, L. G. GómezMascaraque, R. Gavara, and A. López-Rubio, (2018) “Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae" Carbohydrate polymers 186: 184–191. DOI: 10.1016/j.carbpol.2018.01.039.
- [3] R. Ilyas, S. Sapuan, M. Ishak, and E. Zainudin, (2018) “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites" Carbohydrate polymers 202: 186–202. DOI: 10.1016/j.carbpol.2018.09.002.
- [4] T. S. M. Kumar, N. Rajini, K. O. Reddy, A. V. Rajulu, S. Siengchin, and N. Ayrilmis, (2018) “All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers" International journal of biological macromolecules 112: 1310–1315. DOI: 10.1016/j.ijbiomac.2018.01.167.
- [5] J. Tarique, S. Sapuan, A. Khalina, S. Sherwani, J. Yusuf, and R. Ilyas, (2021) “Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review" Journal of Materials Research and Technology 13: 1191–1219. DOI: 10.1016/j.jmrt.2021.05.047.
- [6] T. Li, Y. Zhang, Y. Jin, L. Bao, L. Dong, Y. Zheng, J. Xia, L. Jiang, Y. Kang, and J. Wang, (2023) “Thermoplastic and biodegradable sugarcane lignin-based biocomposites prepared via a wholly solvent-free method" Journal of Cleaner Production 386: 135834. DOI: 10.1016/j.jclepro.2022.135834.
- [7] J. S. Binoj, M. Jaafar, B. B. Mansingh, and A. K. Pulikkal, (2023) “Comprehensive investigation of Areca catechu tree peduncle biofiber reinforced biocomposites: influence of fiber loading and surface modification" Biomass Conversion and Biorefinery: 1–13. DOI: 10.1007/s13399-023-04182-0.
- [8] A. K. Giri and P. C. Mishra, (2023) “Optimization of different process parameters for the removal efficiency of fluoride from aqueous medium by a novel bio-composite using Box-Behnken design" Journal of Environmental Chemical Engineering 11(1): 109232. DOI: 10.1016/j.jece.2022.109232.
- [9] M. Anwar, M. McConnell, and A. E.-D. Bekhit, (2021) “New freeze-thaw method for improved extraction of watersoluble non-starch polysaccharide from taro (Colocasia esculenta): Optimization and comprehensive characterization of physico-chemical and structural properties" Food Chemistry 349: 129210. DOI: 10.1016/j.foodchem.2021.129210.
- [10] X. Yu, Y. Zhang, L. Ran, W. Lu, E. Zhang, and F. Xiong, (2022) “Accumulation and physicochemical properties of starch in relation to eating quality in different parts of taro (Colocasia esculenta) corm" International Journal of Biological Macromolecules 194: 924–932. DOI: 10. 1016/j.ijbiomac.2021.11.147.
- [11] R. Syafiq, R. Ilyas, L. Rajeshkumar, F. M. ALOqla, Y. Nukman, M. Y. M. Zuhri, A. Atiqah, S. Thiagamani, S. P. Bangar, C. Barile, et al., (2023) “Corn<? index value=" Corn"?> starch<? index value=" Starch"?> nanocomposite<? index value=" Nanocomposite"?> films<? index value=" Films"?> reinforced with nanocellulose<? index value=" Nanocellulose"?>" Physical Sciences Reviews (0): DOI: 10.1515/psr-2022-0011.
- [12] K. O. Falade and C. A. Okafor, (2013) “Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches" Food Hydrocolloids 30(1): 173–181. DOI: 10.1016/j.foodhyd.2012.05.006.
- [13] M. L. Sanyang, S. Sapuan, M. Jawaid, M. Ishak, and J. Sahari, (2016) “Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review" Renewable and Sustainable Energy Reviews 54: 533–549. DOI: 10.1016/j.rser.2015.10.037.
- [14] H. Khalili, A. Bahloul, E.-H. Ablouh, H. Sehaqui, Z. Kassab, F.-Z. S. A. Hassani, and M. El Achaby, (2023) “Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima)" International Journal of Biological Macromolecules 226: 345–356. DOI: 10.1016/j.ijbiomac.2022.11.313.
- [15] C. Banerjee, D. Datta, S. Mohanty, S. Samanta, and G. Halder, (2023) “Development of rice starch/recycled polypropylene biocomposites with jute waste nanofiberbased filler" Sustainable Chemistry and Pharmacy 33: 101101. DOI: 10.1016/j.scp.2023.101101.
- [16] P. Nooun, N. Chueangchayaphan, N. Ummarat, and W. Chueangchayaphan, (2023) “Fabrication and properties of natural rubber/rice starch/activated carbon biocomposite-based packing foam sheets and their application to shelf life extension of ‘Hom Thong’banana" Industrial Crops and Products 195: 116409. DOI: 10.1016/j.indcrop.2023.116409.
- [17] M. M. Reza, H. A. Begum, and A. J. Uddin, (2023) “Potentiality of sustainable corn starch-based biocomposites reinforced with cotton filter waste of spinning mill" Heliyon 9(5): DOI: 10.1016/j.heliyon.2023.e15697.
- [18] L. Dai, C. Qiu, L. Xiong, and Q. Sun, (2015) “Characterisation of corn starch-based films reinforced with taro starch nanoparticles" Food chemistry 174: 82–88. DOI: 10.1016/j.foodchem.2014.11.005.
- [19] A. R. Mukurumbira, J. J. Mellem, and E. O. Amonsou, (2017) “Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films" Carbohydrate polymers 165: 142–148. DOI: 10.1016/ j.carbpol.2017.02.041.
- [20] P. C. Martins, J. M. Latorres, and V. G. Martins, (2022) “Impact of starch nanocrystals on the physicochemical, thermal and structural characteristics of starch-based films" LWT 156: 113041. DOI: 10.1016/j.lwt.2021.113041.
- [21] K. Hazrati, S. Sapuan, M. Zuhri, and R. Jumaidin, (2021) “Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers" Journal of Materials Research and Technology 15: 1342–1355. DOI: 10.1016/j.jmrt.2021.09.003.
- [22] N. H. Sari, E. Syafri, W. Fatriasari, A. Karimah, et al., (2023) “Comprehensive Characterization Of Novel Cellulose Fiber From Paederia Foetida and Its Modification For Sustainable Composites Application" Journal of Applied Science and Engineering 26(10): 1399–1408. DOI: 10.6180/jase.202310_26(10).0005.
- [23] C. Macwan, (2010) “Paederia foetida Linn. As a potential medicinal plant : A Review" Journal of Pharmacy Research 3: 3135–3137.
- [24] D. Patel, (2017) “Paederia Foetida Linn.: A Potential Climbing Medicinal Herb in Central India" International Journal of Environmental Sciences & Natural Resources 6(5): 118–124. DOI: 10.19080/IJESNR.2017.06.555699.
- [25] R. A. Ilyas, N. Hamid, K. A. Ishak, M. N. F. Norrrahim, S. Thiagamani, S. Rangappa, S. Siengchin, S. Bangar, and N. M. Nurazzi. “Advanced applications of biomass nanocellulose-reinforced polymer composites”. In: Synthetic and Natural Nanofillers in Polymer Composites. Elsevier, 2023, 349–385. DOI: 10. 1016/B978-0-443-19053-7.00013-5.
- [26] N. H. S. et al., (2023) “A novel micro fiber cellulose from Paederia Foetida Stems: Characterization of physical, morphology, thermal and chemical properties":
- [27] N. H. Sari, C. I. Pruncu, S. M. Sapuan, R. A. Ilyas, A. D. Catur, S. Suteja, Y. A. Sutaryono, and G. Pullen, (2020) “The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite" Polymer Testing 91: 106751. DOI: 10.1016/j.polymertesting.2020.106751.
- [28] J. Ren, K. M. Dang, E. Pollet, and L. Avérous, (2018) “Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content" Polymers 10(8): 808. DOI: 10.3390/polym10080808.
- [29] T. Jiang, Q. Duan, J. Zhu, H. Liu, and L. Yu, (2020) “Starch-based biodegradable materials: Challenges and opportunities" Advanced Industrial and Engineering Polymer Research 3(1): 8–18. DOI: 10.1016/j.aiepr.2019.11.003.
- [30] N. Herlina Sari, I. Wardana, Y. S. Irawan, and E. Siswanto, (2018) “Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks" Journal of Natural Fibers 15(4): 545–558. DOI: 10.1080/15440478.2017.1349707.
- [31] A. R. Muthusamy, S. M. K. Thiagamani, S. Krishnasamy, C. Muthukumar, S. M. Rangappa, and S. Siengchin, (2022) “Lignocellulosic microfibrils from Phaseolus lunatus and Vigna radiata biomass: characterization and properties" Biomass Conversion and Biorefinery: 1–9. DOI: 10.1007/s13399-022-03428-7.
- [32] T. Sathishkumar, P. Navaneethakrishnan, S. Shankar, and R. Rajasekar, (2014) “Mechanical properties and water absorption of short snake grass fiber reinforced isophthallic polyester composites" Fibers and Polymers 15: 1927–1934. DOI: 10.1007/s12221-014-1927-8.
- [33] H. Aloui, A. R. Deshmukh, C. Khomlaem, and B. S. Kim, (2021) “Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties" Food Hydrocolloids 113: 106508. DOI: 10.1016/j.foodhyd. 2020.106508.
- [34] A. Podshivalov, M. Zakharova, E. Glazacheva, and M. Uspenskaya, (2017) “Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties" Carbohydrate Polymers 157: 1162–1172. DOI: 10.1016/j.carbpol.2016.10.079.
- [35] K. Hazrati, S. Sapuan, M. Zuhri, and R. Jumaidin, (2021) “Extraction and characterization of potential biodegradable materials based on Dioscorea hispida tubers" Polymers 13(4): 584. DOI: 10.3390/polym13040584.
- [36] H.-S. Han and K. B. Song, (2021) “Noni (Morinda citrifolia) fruit polysaccharide films containing blueberry (Vaccinium corymbosum) leaf extract as an antioxidant packaging material" Food Hydrocolloids 112: 106372. DOI: 10.1016/j.foodhyd.2020.106372.
- [37] S. Krishnasamy, S. M. K. Thiagamani, C. M. Kumar, R. Nagarajan, R. Shahroze, S. Siengchin, S. O. Ismail, and I. D. MP, (2019) “Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites" International journal of biological macromolecules 141: 1–13. DOI: 10.1016/j.ijbiomac.2019.08.231.
- [38] N. Jain, V. K. Singh, and S. Chauhan, (2017) “A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films" Journal of the Mechanical Behavior of Materials 26(5-6): 213–222. DOI: 10.1515/jmbm-2017-0027.
- [39] K. L. Pickering, M. A. Efendy, and T. M. Le, (2016) “A review of recent developments in natural fibre composites and their mechanical performance" Composites Part A: Applied Science and Manufacturing 83: 98–112. DOI: 10.1016/j.compositesa.2015.08.038.
- [40] P. R. Fitch-Vargas, I. L. Camacho-Hernández, F. Martínez-Bustos, A. R. Islas-Rubio, K. I. CarrilloCañedo, A. Calderón-Castro, N. Jacobo-Valenzuela, A. Carrillo-López, C. I. Delgado-Nieblas, and E. Aguilar-Palazuelos, (2019) “Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber" Carbohydrate polymers 219: 378–386. DOI: 10.1016/j.carbpol.2019.05.043.
- [41] M. Ibrahim, S. Sapuan, E. Zainudin, and M. Zuhri, (2019) “Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites" International journal of biological macromolecules 139: 596–604. DOI: 10.1016/j.ijbiomac.2019.08.015.
- [42] T. Thiruganasambanthan, R. A. Ilyas, M. N. F. Norrrahim, T. S. M. Kumar, S. Siengchin, M. S. M. Misenan, M. A. A. Farid, N. M. Nurazzi, M. R. M. Asyraf, S. Z. S. Zakaria, et al., (2022) “Emerging developments on nanocellulose as liquid crystals: a biomimetic approach" Polymers 14(8): 1546. DOI: 10.3390/polym14081546.
- [43] F.-K. Zeng, H. Liu, and G. Liu, (2014) “Physicochemical properties of starch extracted from Colocasia esculenta (L.) Schott (Bun-long taro) grown in Hunan, China" StarchStärke 66(1-2): 142–148. DOI: 10.1002/star.201300039.
- [44] A. Aydogdu, E. Kirtil, G. Sumnu, M. H. Oztop, and Y. Aydogdu, (2018) “Utilization of lentil flour as a biopolymer source for the development of edible films" Journal of Applied Polymer Science 135(23): 46356. DOI: 10.1002/app.46356.
- [45] A. Mukurumbira, M. Mariano, A. Dufresne, J. J. Mellem, and E. O. Amonsou, (2017) “Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals" International Journal of Biological Macromolecules 102: 241–247. DOI: 10.1016/j.ijbiomac.2017.04.030.
- [46] A. Edhirej, S. Sapuan, M. Jawaid, and N. I. Zahari, (2017) “Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch" Fibers and Polymers 18: 162–171. DOI: 10.1007/s12221-017-6251-7.
- [47] P. Cheng, Y. Peng, K. Wang, A. Le Duigou, S. Yao, and C. Chen, (2023) “Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites" Composite Structures 303: 116313. DOI: 10.1016/j.compstruct.2022.116313.
- [48] P. Aleksandr, Z. Mariia, G. Ekaterina, and U. Mayya, (2017) “Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties" Carbohydrate Polymers 157: DOI: 10.1016/j.carbpol.2016.10.079.
- [49] R. Karthikeyan, M. K. T. Senthil, P. Harikrishnan, M. Chandrasekar, K. Senthilkumar, S. Suchart, M. A. Abeer, A. H. Mahmoud, and M. R. Sanjay, (2023) “Novel Cellulosic Natural Fibers from Abelmoschus Ficulneus Weed: Extraction and Characterization for Potential Application in Polymer Composites" Journal of Polymers and the Environment 157: DOI: 10.1007/s10924-022-02687-9.