Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Xin ZhangThis email address is being protected from spambots. You need JavaScript enabled to view it. and Shaojun Qing

School of Automation and Electrical Engineering of Lanzhou Jiaotong University, Lanzhou, 730070, China


 

Received: October 14, 2023
Accepted: December 10, 2023
Publication Date: January 27, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202411_27(11).0005  


In this paper, a novel adaptive terminal sliding mode (TSM) control method is suggested for the operation and adjustment of uncertain robots under the influence of internal parameter errors and external perturbations. Firstly, a novel TSM surface was designed with the aim of achieving continuous and smooth output torque while ensuring rapid convergence of tracking error. Secondly, the TSM is combined with adaptive control, and an adaptive mechanism is utilized to determine these unknown upper bounds, in order to implement accurate trajectory control in the existence of unknown lumped disturbance. The Lyapunov stability theory is utilized to prove global fixed-time stability, ensuring that the state of the system converges to the origin in fixed time. Importantly, the proposed scheme offers the advantage of continuous and transient-free control torque, eliminating undesired vibrations and ensuring smoother control torques that are well-suited for practical applications. Finally, the simulation experiments unequivocally establish the efficacy and superiority of the controller that was devised.


Keywords: Robot manipulator; Sliding mode control; Adaptive control; Trajectory tracking; Fixed time convergence


  1. [1] M. Van, X. P. Do, and M. Mavrovouniotis, (2020) “Selftuning fuzzy PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators" ISA Transactions 96: 60–68. DOI: 10.1016/j.isatra.2019.06.017.
  2. [2] B. K. Yoo and W. C. Ham, (2000) “Adaptive control of robot manipulator using fuzzy compensator" IEEE Transactions on Fuzzy Systems 8(2): 186–199. DOI: 10.1109/91.842152.
  3. [3] H. Liu and T. Zhang, (2013) “Neural network-based robust finite-time control for robotic manipulators considering actuator dynamics" Robotics and ComputerIntegrated Manufacturing 29(2): 301–308. DOI: 10.1016/j.rcim.2012.09.002.
  4. [4] Z. Li, W. He, Z. Tao, and C. Liu, (2013) “Deterministic Learning Control of a Robotic System Via Neural Networks" IFAC Proceedings Volumes 46(20): 695–700. DOI: 10.3182/20130902-3-CN-3020.00172.
  5. [5] X. Liang, H. Wang, and Y. Zhang, (2022) “Adaptive nonsingular terminal sliding mode control for rehabilitation robots" Computers and Electrical Engineering 99: 107718. DOI: 10.1016/J.COMPELECENG.2022.107718.
  6. [6] T. Mai and H. Tran, (2023) “An adaptive robust backstepping improved control scheme for mobile manipulators robot" ISA Transactions 137: 446–456. DOI: 10.1016/J.ISATRA.2023.01.005.
  7. [7] M. Van, M. Mavrovouniotis, and S. S. Ge, (2018) “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators" IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(7): 1448–1458. DOI: 10.1109/TSMC.2017.2782246.
  8. [8] N. Adhikary and C. Mahanta, (2018) “Sliding mode control of position commanded robot manipulators" Control Engineering Practice 81: 183–198. DOI: 10.1016/j.conengprac.2018.09.011.
  9. [9] J. Su, J. Yang, and S. Li, (2014) “Continuous finite-time anti-disturbance control for a class of uncertain nonlinear systems" Transactions of the Institute of Measurement and Control 36(3): 300–311. DOI: 10.1177/0142331213499182.
  10. [10] H. Rabiee, M. Ataei, and M. Ekramian, (2019) “Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems" Automatica 109: 108515. DOI: 10.1016/j.automatica.2019.108515.
  11. [11] A. Vahidi-Moghaddam, A. Rajaei, and M. Ayati, (2019) “Disturbance-observer-based fuzzy terminal sliding mode control for MIMO uncertain nonlinear systems" Applied Mathematical Modelling 70: 109–127. DOI: 10.1016/j.apm.2019.01.010.
  12. [12] Z. Anjum, Y. Guo, and W. Yao, (2021) “Fault tolerant control for robotic manipulator using fractional-order backstepping fast terminal sliding mode control" Transactions of the Institute of Measurement and Control 43(14): 3244–3254. DOI: 10.1177/01423312211022449.
  13. [13] B. MOUDOUD, H. AISSAOUI, and M. DIANY. “Robust Trajectory Tracking with Adaptive Non-singular Fast TSM Control of a Robot Manipulator”. In: IEEE. 2022, 1880–1885. DOI: 10.1109/SSD54932.2022.9955926.
  14. [14] J. Geng, Y. Sheng, and X. Liu, (2014) “Time-varying nonsingular terminal sliding mode control for robot manipulators" Transactions of the Institute of Measurement and Control 36(5): 604–617. DOI: 10.1177/0142331213512367.
  15. [15] Y.-J. Ma, H. Zhao, and T. Li, (2022) “Robust adaptive dual layer sliding mode controller: Methodology and application of uncertain robot manipulator" Transactions of the Institute of Measurement and Control 44(4): 848–860. DOI: 10.1177/01423312211025330.
  16. [16] M. Boukattaya, N. Mezghani, and T. Damak, (2018) “Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems" ISA Transactions 77: 1–19. DOI: 10.1016/j.isatra.2018.04.007.
  17. [17] L. Yang and J. Yang, (2011) “Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems" International Journal of Robust and Nonlinear Control 21(16): 1865–1879. DOI: 10.1002/rnc.1666.
  18. [18] Y. Feng, X. Yu, and Z. Man, (2002) “Non-singular terminal sliding mode control of rigid manipulators" Automatica 38(12): 2159–2167. DOI: 10.1016/S0005-1098(02)00147-4.
  19. [19] S. Mobayen, F. Tchier, and L. Ragoub, (2017) “Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control" International Journal of Systems Science 48(9): 1990–2002. DOI: 10.1080/00207721.2017.1299812.
  20. [20] J. Zhang, S. Yu, D. Wu, and Y. Yan, (2020) “Nonsingular fixed-time terminal sliding mode trajectory tracking control for marine surface vessels with anti-disturbances" Ocean Engineering 217: 108158. DOI: 10.1016/j.oceaneng.2020.108158.
  21. [21] L. Zhang, Y. Wang, Y. Hou, and H. Li, (2019) “Fixedtime sliding mode control for uncertain robot manipulators" IEEE Access 7: 149750–149763. DOI: 10.1109/ACCESS.2019.2946866.
  22. [22] Y. Wang, S. Li, D. Wang, F. Ju, B. Chen, and H. Wu, (2020) “Adaptive time-delay control for cable-driven manipulators with enhanced nonsingular fast terminal sliding mode" IEEE Transactions on Industrial Electronics 68(3): 2356–2367. DOI: 10.1109/tie.2020.2975473.
  23. [23] Y. Wang, K. Zhu, B. Chen, and M. Jin, (2020) “Modelfree continuous nonsingular fast terminal sliding mode control for cable-driven manipulators" ISA Transactions 98: 483–495. DOI: 10.1016/j.isatra.2019.08.046.
  24. [24] Y. Hu, H. Yan, H. Zhang, M. Wang, and L. Zeng, (2022) “Robust adaptive fixed-time sliding-mode control for uncertain robotic systems with input saturation" IEEE Transactions on Cybernetics 53(4): 2636–2646. DOI: 10.1109/TCYB.2022.3164739.
  25. [25] X. Zhang and R. Shi, (2022) “Novel fast fixed-time sliding mode trajectory tracking control for manipulator" Chaos, Solitons & Fractals 162: 112469. DOI: 10.1016/J.CHAOS.2022.112469.
  26. [26] X. Zhang, R. Shi, Z. Zhu, and Y. Quan, (2023) “Adaptive nonsingular fixed-time sliding mode control for manipulator systems’ trajectory tracking" Complex & Intelligent Systems 9(2): 1605–1616. DOI: 10.1007/S40747-022-00864-W.
  27. [27] M. B. R. Neila and D. Tarak, (2011) “Adaptive terminal sliding mode control for rigid robotic manipulators" International Journal of Automation and Computing 8(2): 215–220. DOI: 10.1007/s11633-011-0576-2.
  28. [28] S. Mondal and C. Mahanta, (2014) “Adaptive second order terminal sliding mode controller for robotic manipulators" Journal of the Franklin Institute 351(4): 2356–2377. DOI: 10.1016/j.jfranklin.2013.08.027.
  29. [29] S. Yi and J. Zhai, (2019) “Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators" ISA Transactions 90: 41–51. DOI: 10.1016/j.isatra.2018.12.046.
  30. [30] H. Sai, Z. Xu, E. Zhang, C. Han, and Y. Yu, (2023) “Chattering-free Fast Fixed-time Sliding Mode Control for Uncertain Robotic Manipulators" International Journal of Control, Automation and Systems 21(2): 630–644. DOI: 10.1007/S12555-021-0823-4.
  31. [31] Y. Su, C. Zheng, and P. Mercorelli, (2020) “Robust approximate fixed-time tracking control for uncertain robot manipulators" Mechanical Systems and Signal Processing 135: 106379. DOI: 10.1016/j.ymssp.2019.106379.
  32. [32] X. Liu and H. Sheng, (2022) “Active Fault Tolerant Control of Uncertain Robotic System Based on Observer and Sliding Mode" IFAC-PapersOnLine 55(1): 598– 603. DOI: 10.1016/J.IFACOL.2022.04.098.
  33. [33] M.-D. Tran, H.-J. Kang, et al., (2015) “Nonsingular terminal sliding mode control of uncertain second-order nonlinear systems" Mathematical Problems in Engineering 2015: DOI: 10.1155/2015/181737.
  34. [34] B. Ren, Y. Wang, and J. Chen, (2019) “A novel robust finite-time trajectory control with the high-order sliding mode for human–robot cooperation" IEEE Access 7: 130874–130882. DOI: 10.1109/ACCESS.2019.2940321.
  35. [35] H. Sai, Z. Xu, S. He, E. Zhang, and L. Zhu, (2022) “Adaptive nonsingular fixed-time sliding mode control for uncertain robotic manipulators under actuator saturation" ISA Transactions 123: 46–60. DOI: 10.1016/J.ISATRA.2021.05.011.