Yen-I ChiangThis email address is being protected from spambots. You need JavaScript enabled to view it.
Department of Information Management, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan, Taoyuan City 33302, Taiwan (ROC)
Received: September 29, 2023 Accepted: March 4, 2024 Publication Date: April 6, 2024
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Conventional facility location problems usually disperse facilities regardless of whether they are desirable. A recent variant emerged as the obnoxious facility dispersion problem that considers the clients influenced by the facilities. The only formulation for this problem is the obnoxious p-median problem, which resembles the p-median facility dispersion problem. Still, alternative models exist. This study presents and investigates several possible models for the obnoxious facility dispersion problem. Given that the models exhibit respective facility dispersion patterns, this study proposed to compare the models using the entropy of facility distribution.
[1] M. J. Kuby, (1987) “Programming models for facility dispersion: The p-dispersion and maxisum dispersion problems" Geographical Analysis 19(4): 315–329. DOI: 10.1111/j.1538-4632.1987.tb00133.x.
[2] E. Erkut and S. Neuman, (1989) “Analytical models for locating undesirable facilities" European Journal of Operational Research 40(3): 275–291. DOI: 10.1016/0377-2217(89)90420-7.
[3] E. Erkut, (1990) “The discrete p-dispersion problem" European Journal of Operational Research 46(1): 48–60. DOI: 10.1016/0377-2217(90)90297-O.
[4] E. Erkut and S. Neuman, (1991) “Comparison of four models for dispersing facilities" INFOR: Information Systems and Operational Research 29(2): 68–86. DOI: 10.1080/03155986.1991.11732157.
[5] T. L. Lei and R. L. Church, (2013) “A unified model for dispersing facilities" Geographical Analysis 45(4): 401–418. DOI: 10.1111/gean.12020.
[6] I. D. Moon and S. S. Chaudhry, (1984) “An analysis of network location problems with distance constraints" Management Science 30(3): 290–307. DOI: 10.1287/mnsc.30.3.290.
[7] S. Alumur and B. Y. Kara, (2007) “A new model for the hazardous waste location-routing problem" Computers & operations research 34(5): 1406–1423. DOI: 10.1016/j.cor.2005.06.012.
[8] R. Batta, M. Lejeune, and S. Prasad, (2014) “Public facility location using dispersion, population, and equity criteria" European Journal of Operational Research 234(3): 819–829. DOI: 10.1016/j.ejor.2013.10.032.
[9] P. Cappanera, G. Gallo, and F. Maffioli, (2003) “Discrete facility location and routing of obnoxious activities" Discrete Applied Mathematics 133(1-3): 3–28. DOI: 10.1016/S0166-218X(03)00431-1.
[10] S. Karimulla, K. Ravi, et al., (2021) “Minimization of cost of energy with renewable energy sources by using fire-fly algorithm" Journal of Applied Science and Engineering 25(3): 461–470. DOI: 10.6180/jase.202206_ 25(3).0001.
[11] T. Bigler, (2024) “A matheuristic for locating obnoxious facilities" Computers & Operations Research: 106602. DOI: 10.1016/j.cor.2024.106602.
[12] C.-C. Lin and Y.-I. Chiang, (2021) “Alternative formulations for the obnoxious p-median problem" Discrete Applied Mathematics 289: 366–373. DOI: 10.1016/j.dam.2020.11.002.
[13] M. Labbé, F. Maffioli, M. Ndiaye, and P. Belotti, (2001) “Obnoxious p-Median problems: valid inequalities and a Branch-and-Cut approach" The OR Peripatetic PostGraduate Programme: 26–29.
[14] P. Belotti, M. Labbé, F. Maffioli, and M. M. Ndiaye, (2007) “A branch-and-cut method for the obnoxious pmedian problem" 4OR 5(4): 299–314. DOI: 10.1007/s10288-006-0023-3.
[15] J. M. Colmenar, R. Martí, and A. Duarte, (2018) “Multi-objective memetic optimization for the bi-objective obnoxious p-median problem" Knowledge-based systems 144: 88–101. DOI: 10.1016/j.knosys.2017.12.028.
[16] A. Herrán, J. M. Colmenar, R. Martí, and A. Duarte, (2020) “A parallel variable neighborhood search approach for the obnoxious p-median problem" International Transactions in Operational Research 27(1): 336– 360. DOI: 10.1111/itor.12510.
[17] G. Lin and J. Guan, (2018) “A hybrid binary particle swarm optimization for the obnoxious p-median problem" Information Sciences 425: 1–17. DOI: 10.1016/j.ins.2017.10.020.
[18] N. Mladenovi´c, A. Alkandari, J. Pei, R. Todosijevi´c, and P. M. Pardalos, (2020) “Less is more approach: basic variable neighborhood search for the obnoxious p-median problem" International Transactions in Operational Research 27(1): 480–493. DOI: 10.1111/itor.12646.
[19] D. R. Shier, (1977) “A min-max theorem for p-center problems on a tree" Transportation Science 11(3): 243– 252. DOI: 10.1287/trsc.11.3.243.
[20] W. Ogryczak and A. Tamir, (2003) “Minimizing the sum of the k largest functions in linear time" Information Processing Letters 85(3): 117–122. DOI: 10.1016/S0020-0190(02)00370-8.
[21] Y.-I. Chiang and C.-C. Lin, (2017) “Compact model for the obnoxious p-median problem" American Journal of Operations Research 7(6): 348–355. DOI: 10.4236/ajor.2017.76026.
[22] S. Singh, S. Tiwari, et al., (2013) “An application of generalized entropy in queueing theory" Journal of Applied Science and Engineering 16(1): 99–103. DOI: 10.6180/jase.2013.16.1.13.
[23] J. M. Colmenar, P. Greistorfer, R. Martí, and A. Duarte, (2016) “Advanced greedy randomized adaptive search procedure for the obnoxious p-median problem" European Journal of Operational Research 252(2): 432–442. DOI: 10.1016/j.ejor.2016.01.047.
[24] J. Sánchez-Oro, A. D. López-Sánchez, and J. M. Colmenar, (2022) “A multi-objective parallel variable neighborhood search for the bi-objective obnoxious p-median problem" Optimization Letters: 1–31. DOI: 10.1007/s11590-020-01690-0.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.