Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Bo-Hsun Chen1, Li-Shu Chen1, Yueh Lu1, Zih-Jie Wang1 and Pei-Chun Lin This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C.


 

Received: October 22, 2015
Accepted: December 5, 2015
Publication Date: March 1, 2016

Download Citation: ||https://doi.org/10.6180/jase.2016.19.1.02  


ABSTRACT


Research on ornithopters is receiving more attention because they exhibit good controllability, maneuverability, and robustness in the natural environment. Here, we report on the design, fabrication, and experimental validation of the mid-size butterfly ornithopter, which mimics the morphology of a dead leaf butterfly. The wing flapping mechanism can support wings with a span of 565 mm and can flap the wings in a 120-degree range and at a frequency of 5 Hz. A lift force measurement and a particle image velocimetry experiment were performed to validate the performance of the ornithopter.


Keywords: Ornithopter, Butterfly, Bio-inspiration, PIV, Robot, Lift Force Measurement, Wing Flapping Stroke


REFERENCES


  1. [1] Shyy, W., Lian, Y., Tang, J., Dragos, V. and Liu, H., Aerodynamics of Low Reynolds Number Flyers, New York: Cambridge University Press (2007). doi: 10.1017/ CBO9780511551154.003
  2. [2] Mueller, T. J., Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, AIAA. Progress in Astronautics and Aeronautics (Book 195), Reston, VA2001 (2001).
  3. [3] Ma, K. Y., Chirarattananon, P., Fuller, S. B. and Wood, R. J., “Controlled Flight of a Biologically Inspired, Insect Scale Robot,” Science, Vol. 340, pp. 603307 (2013). doi: 10.1126/science.1231806
  4. [4] Ma, K. Y., Felton, S. M. and Wood, R. J., “Design, Fabrication and Modeling of The Split Actuator Microrobotic Bee,” Proc IEEE Int Robotics and Automation Conference, St. Paul, MN2012, pp. 11331140 (2012). doi: 10.1109/IROS.2012.6386192
  5. [5] de Croon, G. C., Groen, M. A., Wagter, C. D., Remes, B., Ruijsink, R. and van Oudheusden, B. W., “Design, Aerodynamics and Autonomy of the DelFly,” Bioinspiration and Biomimetics, Vol. 7, No. 2. doi: 10.1088/ 1748-3182/7/2/025003
  6. [6] Inc F. SmartBird http://www.festo.com/net/Support Portal/Files/46270/Festo_SmartBird_en.pdf2011 [cited 2015 8th August].
  7. [7] Inc F. eMotionButterflies http://www.festo.com.cn/net/ SupportPortal/Files/367913/Festo_eMotionButter flies_en.pdf2015 [cited 2015 8th August].
  8. [8] Grauer, J. A. and Hubbard, J. E. J., Editors, “A Multibody Model of an Ornithopter,” Proceedings of the 47th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL: AIAA (2009). doi: 10.2514/6.2009-727
  9. [9] Bermudez, F. G. and Fearing, R., “Optical Flow on a Flapping Wing Robot,” IEEE International Conference Intelligent Robots and Systems, St. Louis, MO2009 (2009). doi: 10.1109/IROS.2009.5354337
  10. [10] Chen, L.-S., Chen, B.-H., Wang, Z.-J. and Lin, P.-C., Design and Manufacturing of a Butterfly Robot, International Conference on Advanced Robotics and Intelligent Systems, Taipei (2015).
  11. [11] Tanaka, H., Matsumoto, K. and Shimoyama, I., Design and Performance of Micromolded Plastic Butterfly Wings on Butterfly Ornithopter, IEEE/RSJ International Conference on Intelligent Robots and Systems; Acropolis Convention Center, Nice, France, pp. 3095 3100 (2008). doi: 10.1109/IROS.2008.4651065
  12. [12] Kovac, M., Vogt, D., DIthier, A., Smith, M. and Wood, R., Aerodynamic Evaluation of Four Butterfly Species for the Design of Flapping-gliding Robotic Insects, IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura (2012). doi: 10.1109/ IROS.2012.6385453
  13. [13] Dudley, R., The Biomechanics of Insect Flight: form, Function, Evolution, Princeton, N. J.: Princeton University Press (2000). doi: 10.1093/aesa/93.5.1195f
  14. [14] Azuma, A., The Biokinetics of Flying and Swimming, 2 ed. Reston, VA: American Institute of Aeronautics and Astronautics Incoporation (2006). doi: 10.2514/5.978 1600862502.0001.0014
  15. [15] Mountcastle, A. M. and Daniel, T. L., “Aerodynamic and Functional Consequences of Wing Compliance,” Experiments in Fluids, Vol. 46, No. 5, pp. 873882 (2009). doi: 10.1007/s00348-008-0607-0
  16. [16] Sane, S. P., “The Aerodynamics of Insect Flight,” The Journal of Experimental Biology, Vol. 206, pp. 4191 4208 (2003). doi: 10.1242/jeb.00663
  17. [17] Ellington, C. P. and van den Berg, C., “Willmott, A. P., Thomas, A. L. R., Leading-edge Vortices in Insect Flight,” Nature, Vol. 384, No. 6610, pp. 626630 (1996). doi: 10.1038/384626a0
  18. [18] Wang, X.-B., The Influence of the Flapping Wing Motion on the Flight of Butterflies: National Taiwan University (2013).
  19. [19] Fei, Y. H., Yang, J. T., Enhanced Thrust and Speed Revealed in the Forward Flight of a Butterfly with Transient Body Translation, American Physical Society (2015). doi: 10.1103/PhysRevE.92.033004
  20. [20] Chronister, N. J., Inventor Ornithopter with Independently Controlled Wings, U.S. (2005).
  21. [21] Chen, L. F., Dead Leaf Butterfly Digital Teaching Resources Webpage, Education Bureau, Taichung City Government [cited 2015 Sep. 16]. Available from: http://etoe.tc.edu.tw/frs/dw/moid/526491c1f26d968d 5a000008/did/26779.
  22. [22] Wissa, A., Analytical Modeling and Experimental Evaluation of a Passively Morphing Ornithopter Wing: University of Maryland (2014).
  23. [23] Drucker, E. G. and Lauder, G. V., Locomotor Forces on a Swimming Fish: Three-dimensional Vortex Wake Dynamics Quantified Using Digital Particle Image Velocimetry, Journal of Experimental Biology, Vol. 202, No. 18, pp. 23932412 (1999).