REFERENCES
- [1] Van Ouwerkerk, J. D., “Image Super-resolution Survey,” Image and Vision Computing, Vol. 24, No. 10, pp. 10391052 (2006). doi: 10.1016/j.imavis.2006.02.026
- [2] Park, S. C., Park, M. K. and Kang, M. G., “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Processing Magazine, Vol. 20, No. 3, pp. 2136 (2003). doi: 10.1109/MSP.2003.1203207
- [3] Kim, S. P. and Bose, N. K., “Reconstruction of 2-D Band Limited Discrete Signals from Nonuniform Samples,” IEEE Proc. Radar Signal Processing, Vol. 137, pp. 197204 (1990). doi: 10.1049/ip-f-2.1990.0030
- [4] Hsieh, C. C., Huang, Y. P., Chen, Y. Y. and Fuh, C. S., “Video Super-resolution by Motion Compensated Iterative Back-projection Approach,” Journal of Information Science and Engineering, Vol. 27, No. 3, pp. 1107 1122 (2011).
- [5] Atkins, C. B., Bouman, C. A. and Allebach, J. P., “Optimal Image Scaling Using Pixel Classification,” Proc. of Intl. Conf. on Image Processing, pp. 864867 (2001). doi: 10.1109/ICIP.2001.958257
- [6] Staelin, C., Greig, D., Fischer, M. and Maurer, R., “Neural Network Image Scaling Using Spatial Errors,” HP Tech. Rep. HPL-2003-26R1, pp. 111 (2003).
- [7] Candocia, F. M. and Principe, J. C., “Super Resolution of Images Based on Local Correlations,” IEEE Transactions on Neural Networks, Vol. 10, No. 2, pp. 372 380 (1999). doi: 10.1109/72.750566
- [8] Tappen, M. F., Russell, B. C. and Freeman, W. T., “Exploiting the Sparse Derivative Prior for Super-resolution and Image Demosaicing,” Proc. of the 3rd Intl. Workshop on Statistical and Computational Theories of Vision, Nice, France, October (2003).
- [9] Freeman, W. T. and Pasztor, E. C., “Learning to Estimate Scenes from Images,” Advances in Neural Information Processing Systems, Vol. 11, pp. 775781 (1999).
- [10] Freeman, W. T. and Pasztor, E. C., “Markov Networks for Super-resolution,” Proc. of the 34th Annual Conference on Information Sciences and Systems, New Jersey, USA, March (2000).
- [11] Freeman, W. T., Jones, T. R. and Pasztor, E. C., “Example-based Super-resolution,” IEEE Computer Graphics and Applications, Vol. 22, No. 2, pp. 5665 (2002). doi: 10.1109/38.988747
- [12] Wang, Q., Tang, X. and Shum, H., “Patch Based Blind Image Super Resolution,” Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 709716 (2005). doi: 10.1109/ICCV.2005.186
- [13] He, R. and Zhang, Z., “Locally Affine Patch Mapping and Global Refinement for Image Super-resolution,” Pattern Recognition, Vol. 44, No. 9, pp. 22102219 (2011). doi: 10.1016/j.patcog.2011.03.004
- [14] Li, X., Lam, K. M., Qiu, G., Shen, L. and Wang, S., “An Efficient Example-Based Approach for Image Super-resolution,” Proc. IEEE International Conf. on Neural Networks and Signal Processing, pp. 575580 (2008). doi: 10.1109/ICNNSP.2008.4590416
- [15] Chang, H., Yeung, D. Y. and Xiong, Y., “Super-resolution through Neighbour Embedding,” Proc. IEEE Conference on Computer Vision and Pattern Classification (CVPR), Vol. 1, pp. 275282 (2004). doi: 10. 1109/CVPR.2004.1315043
- [16] Roweis, S. T. and Saul, L. K., “Nonlinear Dimensionality Reduction by Locally Linear Embedding,” Science, Vol. 290, No. 5500, pp. 23232326 (2000). doi: 10.1126/science.290.5500.2323
- [17] Yang, J., Wright, J., Huang, T. and Ma, Y., “Image Super-resolution via Sparse Representation,” IEEE Transaction on Image Processing, Vol. 19, No. 11, pp. 28612873 (2010). doi: 10.1109/TIP.2010.2050625
- [18] Kim, K. I., Kim, D. H. and Kim, J. H., “Example-based Learning for Image Super-resolution,” Proc. the Third Tsinghua-KAIST Joint Workshop on Pattern Recognition, pp. 140148 (2004).
- [19] Kim, K. I. and Kwon, Y., “Single-image Super-resolution Using Sparse Regression and Natural Image Prior,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 32, No. 6, pp. 11271133 (2010). doi: 10.1109/TPAMI.2010.25
- [20] Nagai, T., Kurematsu, A. and Nguyen, T., “Image Interpolation Using Subband Pseudo 2-D HMM,” Proc. of the 15th IASTED Signal and Image Processing, pp. 276281 (2003).
- [21] Jiazheng, S. and Reichenbach, S. E., “Image Interpolation by Two-dimensional Parametric Cubic Convolution,” IEEE Transaction on Image Processing, Vol. 15, No. 7, pp. 18571870 (2006). doi: 10.1109/TIP.2006. 873429
- [22] MDSP Super-resolution and Demosaicing Datasets, Multi-Dimensional Signal Processing Research Group (MDSP), http://www.soe.ucsc.edu/~milanfar/software/ sr-datasets.html
- [23] Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P., “Image Quality Assessment: from Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, Vol. 13, No. 4, pp. 600612 (2004). doi: 10.1109/TIP.2003.819861