Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Jaime Andrés López López1, Jesús María López-Lezama This email address is being protected from spambots. You need JavaScript enabled to view it.2 and Nicolás Muñoz-Galeano2

1XM S.A. E.S.P., Calle 12 Sur No. 18 – 168, Medellín, Colombia
2Grupo de Investigación en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Antioquia, Calle 67 No 53-108, Medellín, Colombia


 

Received: February 20, 2019
Accepted: May 2, 2019
Publication Date: September 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201909_22(3).0018  

ABSTRACT


This paper presents a metaheuristic approach to solve the transmission network expansion planning (TNEP) problem considering non-conventional solution candidates. The TNEP consists on finding the set of new elements required in a power system to meet a given future demand at a minimum cost. The TNEP traditionally considers as candidate solutions the addition of new lines and transformers. The main contribution of this work is the inclusion of non-conventional solution candidates. Such non-conventional solution candidates are namely: repowering of existing circuits and reactive shunt compensation. Also, an AC modeling of the network that allows obtaining more realistic results than the traditional DC model has been considered. The TNEP is represented by means of a non linear mixed integer programming problem which is solved through a hybrid genetic algorithm (HGA). Several tests were performed on two benchmark power systems to show the applicability and effectiveness of the proposed approach.


Keywords: Transmission Network Expansion Planning, Non-conventional Solution Candidates, Genetic Algorithms, Greedy Randomized Search Procedure


REFERENCES


  1. [1] Leou, R. C. (2011) Amulti-yeartransmissionplanning under a deregulated market. Int. J. Electr. Power Energy Syst 33(3), 708–714. doi: 10.1016/j.ijepes.2010. 11.020
  2. [2] Dominguez, A. H., L. H. Macedo, A. H. Escobar, and R. Romero (2017) Multistage security-constrained HVAC/HVDC transmission expansion planning with a reduced search space. IEEE Trans. Power Syst. 32(6), 4805–4817. doi: 10.1109/TPWRS.2017.2669323
  3. [3] Tejada, D. J., M. López-Lezama, M. J. Rider, and G. Vinasco (2015) Transmission network expansion planning considering repowering and reconfiguration. Int. J. Electr. Power Energy Syst. 69, 213–221. doi: 10. 1016/j.ijepes.2015.01.008
  4. [4] Wu, Z., P. L. Zeng, X. P. Zhang, H. Fu, and Q. Dai (2015) Two-stage stochastic dual dynamic programming for transmission expansion planning with significant renewable generation, IET International Conference on Resilience of Transmission and Distribution Networks (RTDN), 1–6. doi: 10.1049/cp.2015.0881
  5. [5] Kim, H., S. Lee, S. Han, W. Kim, K. Ok, and S. Cho (2015) Integrated generation and transmission expansion planning using generalized Bender’s decomposition method, 2015 IEEE International Conference on Computational Intelligence Communication Technology, 493–497. doi: 10.1109/CICT.2015.29
  6. [6] Rahmani, M., G. Vinasco, M. J. Rider, R. Romero, and P. M. Pardalos (2014) Multistage transmission expansion planning considering fixed series compensation allocation, 2014 IEEE PES General Meeting | Conference Exposition, 1–1. doi: 10.1109/PESGM.2014. 6938959
  7. [7] Gallego, L. A., L. P. Garcés, M. Rahmani, and R. A. Romero (2017) High-performance hybrid genetic algorithm to solve transmission network expansion planning. Transm. Distrib. IET Gener. 11(5), 1111–1118. doi: 10.1049/iet-gtd.2016.0511
  8. [8] Silva, E. L. D., J. M. A. Ortiz, G. C. D. Oliveira, and S. Binato (2001) Transmission network expansion planning under a Tabu search approach. IEEE Trans. Power Syst. 16 (1), 62–68. doi: 10.1109/59.910782
  9. [9] Cortes-Carmona, M., R. Palma-Behnke, and O. Moya (2009) Transmission network expansion planning by a hybrid simulated annealing algorithm, 2009 15th International Conference on Intelligent System Applications to Power Systems, 1–7. doi: 10.1109/ISAP.2009. 5352951
  10. [10] Hejeejo, R., and J. Qiu (2017) Probabilistic transmission expansion planning considering distributed generation and demand response programs, IET Renew Power Gener. 11(5), 650–658. doi: 10.1049/iet-rpg. 2016.0725
  11. [11] Molina, J. D., and H. Rudnick (2010) Transmission of electric energy: a bibliographic review, IEEE Lat. Am. Trans. 8(3), 245–258. doi: 10.1109/TLA.2010.5538399
  12. [12] Hemmati, R., R. A. Hooshmand, and A. Khodabakhshian (2013) State-of-the-art of transmission expansion planning: comprehensive review, Renew Sustain Energy Rev. 23, 312–319. doi: 10.1016/j. rser.2013.03.015
  13. [13] Latorre, G., R. D. Cruz, J. M. Areiza, and A. Villegas (2003) Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 18(2), 938–946. doi: 10.1109/TPWRS.2003. 811168
  14. [14] Rider, M. J., A. V. Garcia, and R. Romero (2007) Power system transmission network expansion planning using AC model, Transm. Distrib. IET Gener. 1(5), 731–742. doi: 10.1049/iet-gtd:20060465
  15. [15] Lin, W., W. Lei, G. Tian, and Y. Zhang (2018) MTLBO: a multi-objective multi-course teachinglearning-based optimization algorithm, Journal of Applied Science and Engineering 21(3), 331–342. doi: 10.6180/jase.201809_21(3).0004
  16. [16] Lin, W., L. Wang, Y. Zhang and C. Zhang (2018) Fullactive scheduling in job shop problems using an improved genetic algorithm, Journal of Applied Science and Engineering 21(4), 507–518.
  17. [17] Garver, L. L. (1970) Transmission network estimation using linear programming, IEEE Trans. Power Appar. Syst. 89(7), 1688–1697. doi: 10.1109/TPAS.1970. 292825
  18. [18] Rider, M. J., A. V. Garcia, and R. Romero (2004) A constructive heuristic algorithm to short term transmission network expansion planning,Proc.2004 IEEE Power Eng. Soc. Gen. Meet., Denver, USA, 2, 2108– 2114. doi: 10.1109/PES.2004.1373255
  19. [19] López-López, A. (2017) Planeamiento de la expansión de la red de transmisión considerando repotenciación, reconfiguración de circuitos existentes y ubicación de compensaciones en serie y en derivación, Universidad de Antioquia.
  20. [20] Rider, M. J. and A. V. Garcia (2004) A constructive heuristic algorithm to short term transmission network expansion planning, IEEE Power Engineering Society General Meeting, 21072113. doi: 10.1109/PES.2004. 1373255


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.