Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Abdulqader D. Faisal 1, Ali A. Aljubouri This email address is being protected from spambots. You need JavaScript enabled to view it.1, Wafaa Khalid Khalef 1

1University of Technology, Department of Applied Sciences, Baghdad, Iraq


 

Received: November 17, 2019
Accepted: April 7, 2020
Publication Date: September 1, 2020

Download Citation: ||https://doi.org/10.6180/jase.202009_23(3).0010  

ABSTRACT


In this paper, Indium oxide nanowires (In2O3 NWs) were successfully synthesized on quartz substrate pre-coated with gold nanoparticles (Au NPs) using chemical vapor deposition (CVD). The nanowires were characterized via x-ray diffraction (XRD), scanning electron microscope (SEM), Ultraviolet-Visible (UV-VIS) spectrophotometer. The sputtered of Au NPs on quartz were analyzed by atomic force microscopy (AFM). The structural, morphological, and optical properties were investigated. The XRD structure reviled a single crystal, with cubic crystal, with preferred orientation along (222). The SEM revealed nanowires growth. The obtained band gap value of 3.6 eV confirmed the formation of In2O3 nanostructures. Regarding to the characteristics of In2O3 NWs, it was fabricated as an ethanol gas sensor at 10-1500 ppm and an optimized temperature of 210 oC. The minimum ethanol gas response of Ra/Rg = 1.6 was obtained at a concentration of 10 ppm. The corresponding response and recovery time were achieved at the lowest concentration of 10 ppm is 10 s and 10 s respectively. So, the In2O3 NWs film synthesized via CVD can be considered as a good ethanol gas sensor device at low concentration. In2O3 NWs growth and gas sensing mechanism were also explained.


Keywords: Chemical vapor deposition (CVD), Gas sensor, In2O3 nanowires


REFERENCES


 

  1. [1] Tricoli, A., Righettoni, M. and Teleki, A., 2010. “Semiconductor gas sensors: dry synthesis and application”. Angewandte Chemie International Edition, 49.42: 7632-7659.
  2. [2] Ramgir, N.S., Yang, Y. and Zacharias, M., 2010. “Nanowire‐Based Sensors”. Small, 6.16: 1705-1722.
  3.  [3] Tang, Q., Wang, W. and Wang, G., 2015. “The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors”. Journal of Materials Chemistry A 3.12: 6662-6670.
  4. [4] Rai, P., Kim, Y.S., Song, H.M., Song, M.K. and Yu, Y.T., 2012. “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases”. Sensors and Actuators B: Chemical 165.1: 133-142.
  5. [5] Perillo, P.M. and Rodríguez, D.F., 2012. “The gas sensing properties at room temperature of TiO2 nanotubes by anodization”. Sensors and Actuators B: Chemical 171: 639-643.
  6. [6] Yadav, A.A., 2016. “SnO2 thin film electrodes deposited by spray pyrolysis for electrochemical supercapacitor applications”. Journal of Materials Science: Materials in Electronics 27.2: 1866-1872.
  7. [7] Aljubouri, A.A., Faisal, A.D. and Khalef, W.K., 2018. “Fabrication of temperature sensor based on copper oxide nanowires grown on titanium coated glass substrate”. Materials Science-Poland 36.3: 460-468.
  8. [8] Xiao, B., Wang, F., Zhai, C., Wang, P., Xiao, C. and Zhang, M., 2016. “Facile synthesis of In2O3 nanoparticles for sensing properties at low detection temperature”. Sensors and Actuators B: Chemical 235: 251-257.
  9. [9] Amirhoseiny, M., Hassan, Z. and ShaShiong, N., 2013. “Synthesis of nanocrystalline In2O3 on different Si substrates at wet oxidation environment”. Optik-International Journal for Light and Electron Optics 124.17: 2679-2681.
  10. [10] Xu, X., Wang, D., Liu, J., Sun, P., Guan, Y., Zhang, H., Sun, Y., Liu, F., Liang, X., Gao, Y. and Lu, G., 2013. “Template-free synthesis of novel In2O3 nanostructures and their application to gas sensors”. Sensors and Actuators B: Chemical 185: 32-38.
  11. [11] Sibin, K.P., Swain, N., Chowdhury, P., Dey, A., Sridhara, N., Shashikala, H.D., Sharma, A.K. and Barshilia, H.C., 2016. “Optical and electrical properties of ITO thin films sputtered on flexible FEP substrate as passive thermal control system for space applications”. Solar Energy Materials and Solar Cells, 145: 314-322.
  12. [12] Bastakoti, B.P., Oveisi, H., Hu, C.C., Wu, K.C.W., Suzuki, N., Takai, K., Kamachi, Y., Imura, M. and Yamauchi, Y., 2013. “Mesoporous Carbon Incorporated with In2O3 Nanoparticles as High‐Performance Supercapacitors”. European Journal of Inorganic Chemistry 2013.7: 1109-1112.
  13. [13] Osiak, M., Khunsin, W., Armstrong, E., Kennedy, T., Torres, C.S., Ryan, K.M. and O’Dwyer, C., 2013. “Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode”. Nanotechnology 24.6: 065401.
  14. [14] Kim, D.J. and Kim, H.K., 2017. “Optimization of titanium‐doped indium oxide anodes for heterojunction organic solar cells”. physica status solidi (A) 214.2: 1600463.
  15. [15] Zheng, Z.Q., Zhu, L.F. and Wang, B., 2015. “In2O3 nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission”. Nanoscale research letters 10.1: 293.
  16. [16] Li, P., Fan, H., Cai, Y. and Xu, M., 2014. “Zn-doped In2O3 hollow spheres: mild solution reaction synthesis and enhanced Cl2 sensing performance”. CrystEngComm 16.13: 2715-2722.
  17. [17] Zhang, S., Song, P., Yang, Z. and Wang, Q., 2018. “Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties”. Physica E: Low-dimensional Systems and Nanostructures 97: 38-44.
  18. [18] Moon, C.S., Kim, H.R., Auchterlonie, G., Drennan, J. and Lee, J.H., 2008. “Highly sensitive and fast responding CO sensor using SnO2 nanosheets”. Sensors and Actuators B: Chemical, 131(2): 556-564.
  19. [19] Zhao, C., Huang, B., Xie, E., Zhou, J. and Zhang, Z., 2015. “Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping”. Sensors and Actuators B: Chemical 207: 313-320
  20. [20] Wang, Y.C., Chen, C.Y., Kuo, C.W., Kuan, T.M., Yu, C.Y. and Chen, I.C., 2016. “Low‐temperature grown indium oxide nanowire‐based antireflection coatings for multi‐crystalline silicon solar cells”. physica status solidi (A) 213.8: 2259-2263.
  21. [21] Cheng, Z.X., Dong, X.B., Pan, Q.Y., Zhang, J.C. and Dong, X.W., 2006. “Preparation and characterization of In2O3 nanorods”. Materials Letters 60.25-26: 3137-3140.
  22. [22] Yang, J., Li, C., Quan, Z., Kong, D., Zhang, X., Yang, P. and Lin, J., 2007. “One-step aqueous solvothermal synthesis of In2O3 nanocrystals”. Crystal Growth and Design 8.2: 695-699.
  23. [23] Huang, Z., Chai, C., Tan, X., Wu, J., Yuan, A. and Zhou, Z., 2007. “Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method”. Materials Letters 61.29: 5137-5140.
  24. [24] Chen, P.C., Shen, G., Sukcharoenchoke, S. and Zhou, C., 2009. “Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films”. Applied Physics Letters 94.4: 043113.
  25. [25] Roso, S., Vilic, T., Urakawa, A. and Llobet, E., 2016. “Gas sensing properties of In2O3 cubes prepared by a hydrothermal method”. Procedia Engineering 168: 247-250.
  26. [26] Jian, L., Shihua, H. and Lü, H., 2015. “Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method”. Journal of Semiconductors 36.12: 123007.
  27. [27] Tuzluca, F.N., Yesilbag, Y.O., Akkus, T. and Ertugrul, M., 2017. “Effects of graphite on the synthesis of 1-D single crystal In2O3 nanostructures at high temperature”. Materials Science in Semiconductor Processing 66: 62-68.
  28. [28] Qurashi, A., El-Maghraby, E.M., Yamazaki, T. and Kikuta, T., 2010. “Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties”. Sensors and Actuators B: Chemical 147.1: 48-54.
  29. [29] Pan, Z.W., Dai, Z.R. and Wang, Z.L., 2001. “Nanobelts of semiconducting oxides”. Science, 291: 1947-1949.
  30. [30] Li, Y., Bondo, Y. and Goldberg, D., 2003. “Single-crystalline In2O3 nanotubes filled with In”, Advanced Materials15: 581–585.
  31. [31] Barsan, N., Koziej, D. and Weimar, U., 2007. “Metal oxide-based gas sensor research: How to?”. Sensors and Actuators B: Chemical, 121(1): 18-35.
  32. [32] Domènech-Gil, G., Samà, J., Pellegrino, P., Barth, S., Gràcia, I., Cané, C. and Romano-Rodriguez, A., 2015. “Gas nanosensors based on individual indium oxide nanostructures”. Procedia Engineering, 120: 795-798.
  33. [33] Xiangfeng, C., Caihong, W., Dongli, J. and Chenmou, Z., 2004. “Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction”. Chemical Physics Letters, 399(4-6): 461-464.
  34. [34] Vomiero, A., Bianchi, S., Comini, E., Faglia, G., Ferroni, M., Poli, N. and Sberveglieri, G., 2007. “In2O3 nanowires for gas sensors: morphology and sensing characterization”. Thin Solid Films, 515.23: 8356-8359.
  35. [35] Zeng, Z., Wang, K., Zhang, Z., Chen, J. and Zhou, W., 2008. “The detection of H2S at room temperature by using individual indium oxide nanowire transistors”. Nanotechnology, 20.4: 045503.
  36. [36] Qurashi, A., El-Maghraby, E.M., Yamazaki, T., Shen, Y. and Kikuta, T., 2009. “A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications”. Journal of Alloys and Compounds, 481.1-2: .L35-L39.
  37. [37] Xu, P., Cheng, Z., Pan, Q., Xu, J., Xiang, Q., Yu, W. and Chu, Y., 2008. “High aspect ratio In2O3 nanowires: synthesis, mechanism and NO2 gas-sensing properties”. Sensors and Actuators B: Chemical, 130.2:.802-808.
  38. [38] Wagner, T., Sauerwald, T., Kohl, C.D., Waitz, T., Weidmann, C. and Tiemann, M., 2009. “Gas sensor based on ordered mesoporous In2O3”. Thin Solid Films, 517.22: 6170-6175.
  39. [39] Keskenler, E.F., Turgut, G. and Doğan, S., 2012. “Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium”. Superlattices and Microstructures 52.1: 107-115.
  40. [40] Lee, C.H., Kim, M., Kim, T., Kim, A., Paek, J., Lee, J.W., Choi, S.Y., Kim, K., Park, J.B. and Lee, K., 2006. “Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes”. Journal of the American Chemical Society 128.29: 9326-9327.
  41. [41] Thirumoorthi, M., Thomas Joseph Prakash, J., 2016. “Structural, optical and electrical properties of indium tin oxide ultrathin films prepared by jet nebulizer spray pyrolysis technique”. Journal of Asian Ceramic Societies 4.1: 124-132.
  42. [42] Makhija, K.K., Ray, A., Patel, R.M., Trivedi, U.B. and Kapse, A.H., 2005. “Indium oxide thin film based ammonia gas and ethanol vapour sensor”. Bulletin of Materials Science, 28(1): 9-17.
  43. [43] Domènech-Gil, G., Barth, S., Samà, J., Pellegrino, P., Gràcia, I., Cané, C. and Romano-Rodriguez, A., 2017. “Gas sensors based on individual indium oxide nanowire”. Sensor and Actuators B chemical 238: 447-454.
  44. [44] Wang, C., Yin, L., Zhang, L., Qi, Y., Lun, N. and Liu, N., 2010. “Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures”. Langmuir, 26.15: 12841-12848.
  45. [45] Zheng, K., Gu, L., Sun, D., Mo, X. and Chen, G., 2010. “The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods”. Materials Science and Engineering: B, 166.1: 104-107.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.