Qiufeng Fan This email address is being protected from spambots. You need JavaScript enabled to view it.1, Fanbo Hou This email address is being protected from spambots. You need JavaScript enabled to view it.1, Feng Shi1
1School of Electronic Information & Electrical Engineering, Anyang Institute of Technology, Anyang 455000,China
Received: November 20, 2019 Accepted: March 31, 2020 Publication Date: September 1, 2020
In the process of image acquisition and transmission, the image will be polluted by noise. Therefore, we propose a bent identity-based convolutional neural network (BICNN) model. The model is a full convolutional network model with a depth of 30 layers, consisting of six feature extraction modules (FEM) and skip connection. Skip connection combines the output features of the first convolution layer with the output features of each FEM in series to guarantee the full extraction of image’s features. Then we adopt the residual learning to alleviate the gradient disappearance and improve the convergence speed so as to ensure that the nonlinear mapping acquired by the trained denoising model is image noise. Bent identity is selected as the activation function, which has soft saturation and the output mean is close to zero, which can enhance the robustness of the model against input noise and accelerate the convergence of the model. Our extensive experiments demonstrate that our BICNN model can not only exhibit high effectiveness in several general image denoising tasks, but also make it highly attractive for practical denoising applications.
Keywords: Image denoising, Bent identity activation function, convolutional neural network, FEM
REFERENCES
[1]Shoulin Yin, Ye Zhang, Shahid Karim. “Large Scale Remote Sensing Image Segmentation Based on Fuzzy Region Competition and Gaussian Mixture Model”, IEEE Access. 6, pp: 26069-26080. (2018). doi: 1109/ACCESS.2018.2834960
[2]Teng Lin, Hang Li and Shoulin Yin. “Modified Pyramid Dual Tree Direction Filter-based Image De-noising via Curvature Scale and Non-local mean multi-Grade remnant multi-Grade Remnant Filter”, International Journal of Communication Systems. 31(16), (2018). doi: 10.1002/dac.3486
[3]Shoulin Yin, Jing Bi. “Medical Image Annotation Based on Deep Transfer Learning”, Journal of Applied Science and Engineering. 22(2), pp. 385-390 (2019). doi: 10.6180/jase.201906_22(2).0020
[5]Lin Teng, Hang Li. “CSDK: A Chi-square Distribution-Kernel method for Image De-noising Under the IoT Big Data Environment”, International Journal of Distributed Sensor Networks. Vol. 15, No. 5, 2019. doi: 10.1177/1550147719847133
[6]Dabov K, Foi A, Katkovnik V, et al. “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering”, IEEE Transactions on Image Processing, 16(8):2080-2095. (2007) doi: 10.1109/TIP.2007.901238
[7]Feng W, Qiao P, Chen Y. “Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion”, IEEE Transactions on Cybernetics, 1-12. (2017) doi: 10.1109/TCYB.2017.2713421
[8]Zhang K, Zuo W, Chen Y, et al. “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising”, IEEE Transactions on Image Processing, 2017:1-1. doi: 10.1109/TIP.2017.2662206
[9]Zhang K, Zuo W, Zhang L. “FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising”, IEEE Transactions on Image Processing, 27(9):4608-4622. (2018) doi: 10.1109/TIP.2018.2839891
[10]Isogawa K, Ida T, Shiodera T, et al. “Deep Shrinkage Convolutional Neural Network for Adaptive Noise Reduction”, IEEE Signal Processing Letters, 25(2):224-228. (2018) doi: 10.1109/LSP.2017.2782270
[11]Shoulin Yin, Ye Zhang and Shahid Karim. “Region search based on hybrid convolutional neural network in optical remote sensing images”, International Journal of Distributed Sensor Networks, vol. 15, No. 5, 2019. doi: 10.1177/1550147719852036
[12]Boyang Chen, Xuan Feng, Ronghua Wu, et al. “Adaptive Wavelet Filter with Edge Compensation for Remote Sensing Image Denoising”, IEEE Access, PP(99):1-1. (2019) doi: 10.1109/ACCESS.2019.2926653
[14]Lu J Y, Hong L, Dong Y, et al. “A New Wavelet Threshold Function and Denoising Application”, Mathematical Problems in Engineering, Vol. 3, pp. 1-8. (2016)
[15]Huang F, Lan B, Tao J, et al. “A Parallel Nonlocal Means Algorithm for Remote Sensing Image Denoising on an Intel Xeon Phi Platform”, IEEE Access, Vol. 5, pp. 8559 - 856. (2017) doi: 10.1109/ACCESS.2017.2696362
[16]Tang Y, Chen Y, Xu N, et al. “Image denoising via sparse coding using eigenvectors of graph Laplacian”, Digital Signal Processing, 50(C), pp.114-122. (2016) doi: 10.1016/j.dsp.2015.12.013
[17]Li H, Suen C Y. “A novel Non-local means image denoising method based on grey theory”, Pattern Recognition, Vol. 49, pp. 237-248. (2016) doi: 10.1016/j.patcog.2015.05.028
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.