- [1] Y. Wang, R. Zou, F. Liu, L. Zhang, and Q. Liu, (2021) “A Review of Wind Speed and Wind Power Forecasting with Deep Neural Networks" Applied Energy 304: 117766. DOI: 10.1016/j.apenergy.2021.117766.
- [2] N. T. H. Thu, P. N. Van, N. V. N. Nam, and P. H. Minh, (2022) “Forecasting Wind Speed Using A Hybrid Model Of Convolutional Neural Network And Long-Short Term Memory With Boruta Algorithm-Based Feature Selection" Journal of Applied Science and Engineering 26(8): 1053–1060. DOI: 10.6180/jase.202308_26(8).0001.
- [3] A. Gupta, A. Kumar, and K. Boopathi, (2021) “Intraday Wind Power Forecasting Employing Feedback Mechanism" Electric Power Systems Research 201: 107518. DOI: 10.1016/j.epsr.2021.107518.
- [4] Z. Zhen, G. Qiu, S. Mei, F. Wang, X. Zhang, R. Yin, Y. Li, G. J. Osório, M. Shafie-khah, and J. P. Catalão, (2022) “An Ultra-Short-Term Wind Speed Forecasting Model Based on Time Scale Recognition and Dynamic Adaptive Modeling" International Journal of Electrical Power & Energy Systems 135: 107502. DOI: 10.1016/j.ijepes.2021.107502.
- [5] N. T. H. Thu, P. N. Van, and P. Q. Bao. “MultiStep Ahead Wind Speed Forecasting Based on a Bi-LSTM Network Combined with Decomposition Technique”. In: Computational Intelligence Methods for Green Technology and Sustainable Development. Ed. by Y.-P. Huang, W.-J. Wang, H. A. Quoc, H.-G. Le, and H.-N. Quach. Cham: Springer International Publishing, 2023, 569–580.
- [6] Y.-K. Wu, J.-J. Zeng, G.-L. Lu, S.-W. Chau, and Y.-C. Chiang, (2020) “Development of an Equivalent Wind Farm Model for Frequency Regulation" IEEE Transactions on Industry Applications 56(3): 2360–2374. DOI: 10.1109/TIA.2020.2974418.
- [7] Y. Wang, Q. Hu, L. Li, A. M. Foley, and D. Srinivasan, (2019) “Approaches to Wind Power Curve Modeling: A Review and Discussion" Renewable and Sustainable Energy Reviews 116: 109422. DOI: 10.1016/j.rser.2019.109422.
- [8] T. H. T. Nguyen and Q. B. Phan, (2022) “Hourly Day Ahead Wind Speed Forecasting Based on a Hybrid Model of EEMD, CNN-Bi-LSTM Embedded with GA Optimization" Energy Reports 8: 53–60. DOI: 10.1016/j.egyr.2022.05.110.
- [9] J. Yan and T. Ouyang, (2019) “Advanced Wind Power Prediction Based on Data-Driven Error Correction" Energy Conversion and Management 180: 302–311. DOI: 10.1016/j.enconman.2018.10.108.
- [10] J. Jung and R. P. Broadwater, (2014) “Current Status and Future Advances for Wind Speed and Power Forecasting" Renewable and Sustainable Energy Reviews 31: 762–777. DOI: 10.1016/j.rser.2013.12.054.
- [11] N. E. Huang and Z. Wu, (2008) “A Review on HilbertHuang Transform: Method and Its Applications to Geophysical Studies" Reviews of Geophysics 46(2): DOI: 10.1029/2007RG000228.
- [12] J. Torres, A. García, M. De Blas, and A. De Francisco, (2005) “Forecast of Hourly Average Wind Speed with ARMA Models in Navarre (Spain)" Solar Energy 79(1): 65–77. DOI: 10.1016/j.solener.2004.09.013.
- [13] K. Yunus, T. Thiringer, and P. Chen, (2016) “ARIMABased Frequency-Decomposed Modeling of Wind Speed Time Series" IEEE Transactions on Power Systems 31(4): 2546–2556. DOI: 10.1109/TPWRS.2015.2468586.
- [14] R. C. Deo, M. A. Ghorbani, S. Samadianfard, T. Maraseni, M. Bilgili, and M. Biazar, (2018) “MultiLayer Perceptron Hybrid Model Integrated with the Firefly Optimizer Algorithm for Windspeed Prediction of Target Site Using a Limited Set of Neighboring Reference Station Data" Renewable Energy 116: 309–323. DOI: 10.1016/j.renene.2017.09.078.
- [15] Y. Zhang, C. Zhang, Y. Zhao, and S. Gao, (2018) “Wind speed prediction with RBF neural network based on PCA and ICA" Journal of Electrical Engineering 69(2): 148–155. DOI: 10.2478/jee-2018-0018.
- [16] E. Cadenas and W. Rivera, (2009) “Short Term Wind Speed Forecasting in La Venta, Oaxaca, México, Using Artificial Neural Networks" Renewable Energy 34(1): 274–278. DOI: 10.1016/j.renene.2008.03.014.
- [17] J. Song, J. Wang, and H. Lu, (2018) “A Novel Combined Model Based on Advanced Optimization Algorithm for Short-Term Wind Speed Forecasting" Applied Energy 215: 643–658. DOI: 10.1016/j.apenergy.2018.02.070.
- [18] J. Shi, J. Guo, and S. Zheng, (2012) “Evaluation of Hybrid Forecasting Approaches for Wind Speed and Power Generation Time Series" Renewable and Sustainable Energy Reviews 16(5): 3471–3480. DOI: 10.1016/j.rser.2012.02.044.
- [19] C. Wang, H. Zhang, and P. Ma, (2020) “Wind Power Forecasting Based on Singular Spectrum Analysis and a New Hybrid Laguerre Neural Network" Applied Energy 259: 114139. DOI: 10.1016/j.apenergy.2019.114139.
- [20] K. Zhang, R. Gençay, and M. Ege Yazgan, (2017) “Application of Wavelet Decomposition in Time-Series Forecasting" Economics Letters 158: 41–46. DOI: 10.1016/j.econlet.2017.06.010.
- [21] Y. Zhao, L. Ye, W. Wang, H. Sun, Y. Ju, and Y. Tang, (2018) “Data-Driven Correction Approach to Refine Power Curve of Wind Farm Under Wind Curtailment" IEEE Transactions on Sustainable Energy 9(1): 95–105. DOI: 10.1109/TSTE.2017.2717021.
- [22] X. Hou and L. Zhang. “Saliency Detection: A Spectral Residual Approach”. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1–8. DOI: 10.1109/CVPR.2007.383267.
- [23] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and Q. Zhang. “Time-Series Anomaly Detection Service at Microsoft”. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Comment: KDD 2019. 25, 2019, 3009–3017. DOI: 10.1145/3292500.3330680. arXiv: 1906.03821 [cs, stat].
- [24] 6.6 STL Decomposition | Forecasting: Principles and Practice (2nd Ed). Accessed: Jun. 22, 2022.
- [25] O. Trull, J. C. García-Díaz, and A. Peiró-Signes, (2022) “Multiple Seasonal STL Decomposition with DiscreteInterval Moving Seasonalities" Applied Mathematics and Computation 433: 127398. DOI: 10.1016/j.amc.2022.127398.
- [26] C.-N. Ko and C.-M. Lee, (2013) “Short-Term Load Forecasting Using SVR (Support Vector Regression)-Based Radial Basis Function Neural Network with Dual Extended Kalman Filter" Energy 49: 413–422. DOI: 10.1016/j.energy.2012.11.015.
- [27] N. T. Hoai Thu, P. N. Van, P. Q. Bao, N. V. Nhat Nam, P. H. Minh, and T. N. Quang. “Short-Term Forecasting of Solar Radiation Using a Hybrid Model of CNN-LSTM Integrated with EEMD”. In: 2022 6th International Conference on Green Technology and Sustainable Development (GTSD). 2022 6th International Conference on Green Technology and Sustainable Development (GTSD). 2022, 854–859. DOI: 10.1109/GTSD54989.2022.9988761.
- [28] J. Qu, Z. Qian, and Y. Pei, (2021) “Day-Ahead Hourly Photovoltaic Power Forecasting Using Attention-Based CNN-LSTM Neural Network Embedded with Multiple Relevant and Target Variables Prediction Pattern" Energy 232: 120996. DOI: 10.1016/j.energy.2021.120996.
- [29] N. N. V. Nhat, D. N. Huu, and T. N. T. Hoai, (2023) “Evaluating the EEMD-LSTM Model for Short-Term Forecasting of Industrial Power Load: A Case Study in Vietnam" International Journal of Renewable Energy Development 12(5): 881–890. DOI: 10.14710/ijred.2023.55078.
- [30] T. H. T. Nguyen, Q. B. Phan, V. N. N. Nguyen, and H. M. Pham. “Day-Ahead Electricity Load Forecasting Based on Hybrid Model of EEMD and Bidirectional LSTM”. In: The 5th International Conference on Future Networks & Distributed Systems. ICFNDS 2021. New York, NY, USA: Association for Computing Machinery, 13, 2022, 31–41. DOI: 10.1145/3508072.3508079.