Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Kevin Cleary Wanta1This email address is being protected from spambots. You need JavaScript enabled to view it., Ignatius Loyola Bismo Yuwono1, Ratna Frida Susanti1, Widi Astuti2, and Himawan Tri Bayu Murti Petrus3

1Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University, Jl. Ciumbuleuit 94, Bandung, 40141, Indonesia

2Research Center for Mineral Technology, National Research and Innovation Agency, Jl. Ir. Sutami, Km. 15, Tanjung Bintang, 35361, Indonesia

3Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus UGM, Yogyakarta, 55281, Indonesia


 

 

Received: August 3, 2023
Accepted: November 5, 2023
Publication Date: January 24, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202411_27(11).0002  


Nickel-based compounds play an essential role as one of the materials for manufacturing rechargeable battery electrodes. One compound that has the potential to be used is nickel oxalate. This study investigates using the spent catalyst Ni/γ − Al2O3 as a raw material to produce nickel oxalate. The spent catalyst acts as a nickel source in the precursor solution. The spent catalyst was leached first, and then a two-step precipitation process was conducted to synthesize nickel oxalate. The first precipitation process took place at pH 6 using a sodium hydroxide (NaOH) solution to remove all aluminum (Al) contaminants. Meanwhile, the remaining precursor solution was dripped with an oxalic acid solution to produce nickel oxalate. For the second precipitation, this study varied the pH of the solution between 1-5. The experimental results proved that almost all Ni (II) ions were successfully precipitated. Optimum operating conditions were reached when the pH of the solution was 1 and the precipitation process lasted for 24 hours. The precipitate formed was then analyzed to determine the characteristic of the precipitate. The characterization results showed that the precipitate had a purity of 96.06%Ni. Overall, the precipitate was still experiencing an agglomeration phenomenon. In the future, this phenomenon needs to be prevented using surfactants or sonicators. However, this study proves that the spent catalyst has extraordinary potency to be utilized as a raw material to manufacture nickel-based compounds.


Keywords: nickel oxalate, oxalic acid, precipitation, rechargeable battery, spent catalyst


  1. [1] H.-J. Oh, C.-H. Jo, C. S. Yoon, H. Yashiro, S.-J. Kim, S. Passerini, Y.-K. Sun, and S.-T. Myung, (2016) “Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries" NPG Asia Materials 8(5): e270–e270. DOI: 10.1038/am.2016.59.
  2. [2] J. Li, E. Shangguan, D. Guo, M. Tian, Y. Wang, Q. Li, Z. Chang, X.-Z. Yuan, and H. Wang, (2014) “Synthesis, characterization and electrochemical performance of high-density aluminum substituted α-nickel hydroxide cathode material for nickel-based rechargeable batteries" Journal of Power Sources 270: 121–130. DOI: 10.1016/j.jpowsour.2014.07.098.
  3. [3] W. Yan, S. Yang, Y. Huang, Y. Yang, and G. Yuan, (2020) “A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries" Journal of alloys and compounds 819: 153048. DOI: 10.1016/j.jallcom.2019.15304.
  4. [4] J. Kim, H. Cha, H. Lee, P. Oh, and J. Cho, (2020) “Surface and interfacial chemistry in the nickel-rich cathode materials" Batteries & Supercaps 3(4): 309–322. DOI: 10.1002/batt.201900131.
  5. [5] Q. Xie, W. Li, and A. Manthiram, (2019) “A Mg-doped high-nickel layered oxide cathode enabling safer, highenergy-density Li-ion batteries" Chemistry of materials 31(3): 938–946. DOI: 10.1021/acs.chemmater.8b03900.
  6. [6] X. Zeng, C. Zhan, J. Lu, and K. Amine, (2018) “Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries" Chem 4(4): 690–704. DOI: 10.1016/j.chempr.2017.12.027.
  7. [7] K. C. Wanta, S. Lim, R. F. Susanti, G. P. Gemilar, W. Astuti, and H. T. B. M. Petrus, (2021) “Effect of surfactant type on synthesis and characteristics of nanonickel hydroxide" Jurnal Rekayasa Proses 15(2): 217–230. DOI: 10.22146/jrekpros.69723.
  8. [8] D. S. Hall, D. J. Lockwood, C. Bock, and B. R. MacDougall, (2015) “Nickel hydroxides and related materials: a review of their structures, synthesis and properties" Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471(2174): 20140792. DOI: 10.1098/rspa.2014.0792.
  9. [9] K. K. Yadav, S. K. Guchhait, R. Wadhwa, M. Jha, et al., (2021) “Surface phosphorization of nickel oxalate nanosheets to stabilize ultrathin nickel cyclotetraphosphate nanosheets for efficient hydrogen generation" Materials Research Bulletin 139: 111275. DOI: 10.1016/j.materresbull.2021.111275.
  10. [10] X. Chen, T. Zhou, J. Kong, H. Fang, and Y. Chen, (2015) “Separation and recovery of metal values from leach liquor of waste lithium nickel cobalt manganese oxide based cathodes" Separation and Purification Technology 141: 76–83. DOI: 10.1016/j.seppur.2014.11.039.
  11. [11] K. C. Wanta, W. Astuti, H. Petrus, and I. Perdana, (2022) “Product diffusion-controlled leaching of nickel laterite using low concentration citric acid leachant at atmospheric condition" International Journal of Technology 13(2): 410–421. DOI: 10.14716/ijtech.v13i2.4641.
  12. [12] K. C. Wanta, E. Y. Natapraja, R. F. Susanti, G. P. Gemilar, W. Astuti, and H. T. B. M. Petrus, (2021) “Increasing of Metal Recovery In Leaching Process of Spent Catalyst At Low Temperature: The Addition of Hydrogen Peroxide And Sodium Chloride" Metalurgi 36(2): DOI: 10.14203/metalurgi.v36i2.591.
  13. [13] H. Petrus, K. C. Wanta, H. Setiawan, I. Perdana, and W. Astuti. “Effect of pulp density and particle size on indirect bioleaching of Pomalaa nickel laterite using metabolic citric acid”. In: IOP Conference Series: Materials Science and Engineering. 285. 1. IOP publishing. 2018, 012004. DOI: 10.1088/1757-899X/285/1/012004.
  14. [14] A. E. Lewis, (2010) “Review of metal sulphide precipitation" Hydrometallurgy 104(2): 222–234. DOI: 10.1016/j.hydromet.2010.06.010.
  15. [15] W. Astuti, F. Nurjaman, F. R. Mufakhir, S. Sumardi, D. Avista, K. C. Wanta, and H. T. B. M. Petrus, (2023) “A novel method: Nickel and cobalt extraction from citric acid leaching solution of nickel laterite ores using oxalate precipitation" Minerals Engineering 191: 107982. DOI: 10.1016/j.mineng.2022.107982.
  16. [16] R. Harvey, R. Hannah, and J. Vaughan, (2011) “Selective precipitation of mixed nickel–cobalt hydroxide" Hydrometallurgy 105(3-4): 222–228. DOI: 10.1016/j.hydromet.2010.10.003.
  17. [17] A. Kolezy´nski, B. Handke, and E. Drozdz-Cie´sla, (2013) “Crystal structure, electronic structure, and bonding properties of anhydrous nickel oxalate" Journal of thermal analysis and calorimetry 113: 319–328. DOI: 10.1007/s10973-012-2844-y.
  18. [18] A. Verma, R. Kore, D. R. Corbin, and M. B. Shiflett, (2019) “Metal recovery using oxalate chemistry: a technical review" Industrial & Engineering Chemistry Research 58(34): 15381–15393. DOI: 10.1021/acs.iecr.9b02598.
  19. [19] S. Surianti, K. C. Wanta, W. Astuti, F. R. Mufakhir, I. Perdana, and H. T. Petrus, (2022) “Synthesis of Nickel Oxalate from Extract Solution of Nickel Laterite Ore: Optimation and Kinetics Study" Journal of Mining Science 58(3): 476–485. DOI: 10.1134/S1062739122030152.
  20. [20] P. P. Sarangi, S. Vadera, M. Patra, and N. Ghosh, (2010) “Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method" Powder Technology 203(2): 348–353. DOI: 10.1016/j.powtec.2010.05.027.
  21. [21] H. H. Lim, B. A. Horri, and B. Salamatinia. “Synthesis and characterizations of Nickel (II) Oxide sub-micro rods via co-precipitation methods”. In: IOP Conference Series: Materials Science and Engineering. 398. 1. IOP Publishing. 2018, 012033. DOI: 10.1088/1757-899X/398/1/012033.
  22. [22] S. Chenakin and N. Kruse, (2019) “Thermal decomposition of nickel oxalate dihydrate: a detailed XPS insight" The Journal of Physical Chemistry C 123(51): 30926– 30936. DOI: 10.1021/acs.jpcc.9b07879.
  23. [23] K. C. Wanta, F. H. Tanujaya, F. D. Putra, R. F. Susanti, G. P. Gemilar, W. Astuti, and H. T. B. M. Petrus, (2020) “Synthesis and characterization of nickel hydroxide from extraction solution of spent catalyst" Metalurgi 35(3): 111–118. DOI: 10.14203/metalurgi.v35i3.572.
  24. [24] J. Allen, (1953) “The precipitation of nickel oxalate" The Journal of Physical Chemistry 57(7): 715–716. DOI: 10.1021/j150508a027.
  25. [25] E. Christodoulou, D. Panias, and I. Paspaliaris, (2001) “Calculated Solubility of Trivalent Iron and Aluminum in Oxalic Acid Solutions At 25° C." Canadian metallurgical quarterly 40(4): 421–432. DOI: 10.1179/cmq.2001.40.4.421.
  26. [26] J. E. Barney, W. J. Argersinger Jr, and C. Reynolds, (1951) “A Study of Some Complex Chlorides and Oxalates by Solubility Measurements1" Journal of the American Chemical Society 73(8): 3785–3788. DOI: 10.1021/ ja01152a065.
  27. [27] K. K. Sahu, R. K. Sahoo, L. Beshra, and M. Mohapatra, (2021) “Facile synthesis of nickel oxalate@ carbon as electrical double layer and its derived nickel oxide as pseudo-type supercapacitor electrodes" Ionics 27: 819– 832. DOI: 10.1007/s11581-020-03822-z.
  28. [28] H. Dong and G. M. Koenig Jr, (2017) “Compositional control of precipitate precursors for lithium-ion battery active materials: role of solution equilibrium and precipitation rate" Journal of Materials Chemistry A 5(26): 13785–13798. DOI: https: //doi.org/10.1039/C7TA03653A
  29. [29] URL: https: //source.benchmarkminerals.com/article/nickel-the-often-forgotten-battery-metal.
  30. [30] E. Gerold, S. Luidold, and H. Antrekowitsch, (2020) “Selective precipitation of metal oxalates from lithium ion battery leach solutions" Metals 10(11): 1435. DOI: 10.3390/met10111435.
  31. [31] J. Liu, Z. Qiu, J. Yang, L. Cao, and W. Zhang, (2016) “Recovery of Mo and Ni from spent acrylonitrile catalysts using an oxidation leaching–chemical precipitation technique" Hydrometallurgy 164: 64–70. DOI: 10.1016/j.hydromet.2016.05.003.
  32. [32] K. K. Sahu, A. Agarwal, and B. D. Pandey, (2005) “Nickel recovery from spent nickel catalyst" Waste management & research 23(2): 148–154. DOI: 10.1177/0734242X05052334.
  33. [33] S. Pradhan, J. Hedberg, E. Blomberg, S. Wold, and I. Odnevall Wallinder, (2016) “Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles" Journal of nanoparticle research 18: 1–14. DOI: 10.1007/s11051-016-3597-5.
  34. [34] A. R. Adiatama, R. F. Susanti, W. Astuti, H. T. B. M. Petrus, and K. C. Wanta, (2022) “Synthesis and Characteristic of Nanosilica From Geothermal Sludge: Effect of Surfactant" Metalurgi 37(2): 73–86. DOI: 10.14203/metalurgi.v37i2.637.