- [1] J. Cai, S. Gu, and L. Zhang, (2018) “Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images" IEEE Transactions on Image Processing 27(4): 2049–2062. DOI: 10.1109/TIP.2018.2794218.
- [2] A. Zaman, S. H. Park, H. Bang, C.-w. Park, I. Park, and S. Joung, (2020) “Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images" International Journal of Computer Assisted Radiology and Surgery 15(6): 931–941. DOI: 10.1007/s11548-020-02192-18.
- [3] S. Yin and Y. Zhang, (2019) “Singular value decomposition-based anisotropic diffusion for fusion of infrared and visible images" International journal of image and data fusion 10(1/4): 146–163. DOI: 10.1080/19479832.2018.1487886.
- [4] K. Kim, S. Park, S. Yu, and J. Paik. “Bright region preserving back-light image enhancement using clipped histogram equalization”. In: 2018, 1–3. DOI: 10.23919/ ELINFOCOM.2018.8330592.
- [5] W. Wang, X. Wu, X. Yuan, and Z. Gao, (2020) “An Experiment-Based Review of Low-Light Image Enhancement Methods" IEEE Access 8: 87884–87917. DOI: 10.1109/ACCESS.2020.2992749.
- [6] L. Ma, J. Lin, J. Shang, W. Zhong, X. Fan, Z. Luo, and R. Liu, (2020) “Learning Multi-scale Retinex with Residual Network for Low-Light Image Enhancement" Springer, Cham: DOI: 10.1007/978- 3-030-60633-6_24.
- [7] J. Ma, X. Fan, J. Ni, X. Zhu, and C. Xiong, (2017) “Multi-scale retinex with color restoration image enhancement based on Gaussian filtering and guided filtering" International Journal of Modern Physics, B. Condensed Matter Physics, Statistical Physics, Applied Physics: DOI: 10.1142/s0217979217440775.
- [8] X. Liu, J. Zhang, Y. Yin, W. Yang, C. Zhang, and X. Wu, (2020) “Underwater polarization image restoration based on logarithmic transformation and dark channel" Optoelectronics Letters v.16;No.89(02): 73–77. DOI: 10.1007/s11801-020-9135-9.
- [9] Y.-F. Pu, P. Siarry, A. Chatterjee, Z.-N. Wang, Z. Yi, Y.-G. Liu, J.-L. Zhou, and Y. Wang, (2020) “Low-light image joint enhancement optimization algorithm based on frame accumulation and multi-scale Retinex" Ad Hoc Networks 113(4): 102398. DOI: 10.1016/j.adhoc.2020.102398.
- [10] Y. F. Pu, P. Siarry, A. Chatterjee, Z. N. Wang, Z. Yi, Y. G. Liu, J. L. Zhou, and Y. Wang., (2017) “A Fractional-Order Variational Framework for Retinex: Fractional-Order Partial Differential Equation-Based Formulation for Multi-Scale Nonlocal Contrast Enhancement with Texture Preserving" IEEE Transactions on Image Processing: 1–1. DOI: 10.1109/TIP.2017.2779601.
- [11] D. Zosso, G. Tran, and S. Osher, (2013) “A unifying retinex model based on non-local differential operators": DOI: 10.1117/12.2008839.
- [12] Z. Shi, M. mei Zhu, B. Guo, M. Zhao, and C. Zhang. “Nighttime low illumination image enhancement with single image using bright/dark channel prior”. In: 2018. 2018. DOI: 10.1186/s13640-018-0251-4.
- [13] X. Dong, Y. A. Pang, and J. G. Wen. “Fast efficient algorithm for enhancement of low lighting video”. In: 2011 IEEE International Conference on Multimedia and Expo. 2010. DOI: 10.1145/1836845.1836920.
- [14] D. Park, M. Kim, B. Ku, S. Yoon, and D. K. Han. “Image enhancement for extremely low light conditions”. In: 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 2014, 307–312. DOI: 10.1109/AVSS.2014.6918686.
- [15] S. Ma, H. Ma, Y. Xu, S. Li, C. Lv, and M. Zhu, (2018) “A Low-Light Sensor Image Enhancement Algorithm Based on HSI Color Model" Sensors 18(10): DOI: 10.3390/s18103583.
- [16] Y. F. Wang, H. M. Liu, and Z. W. Fu, (2019) “Low-Light Image Enhancement via the Absorption Light Scattering Model" IEEE Transactions on Image Processing 28(11): 5679–5690. DOI: 10.1109/TIP.2019.2922106.
- [17] S.-L. Y. Jing Yu Hang Li and S. Karim, (2020) “Dynamic Gesture Recognition Based on Deep Learning in Human-to-Computer Interfaces" Journal of Applied Science and Engineering 23(1): 31–38. DOI: 10.6180/jase.202003_23(1).0004.
- [18] Y. Sun, S.-L. Yin, and L. Teng, (2020) “Research on multi-robot intelligent fusion technology based on multimode deep learning" International Journal of Electronics and Information Engineering 12(3): 119–127. DOI: 10.6636/IJEIE.202009_12(3).03.
- [19] L. Tao, C. Zhu, G. Xiang, Y. Li, and X. Xie. “LLCNN: A convolutional neural network for low-light image enhancement”. In: Visual Communications & Image Processing. 2018. DOI: 10.1109/VCIP.2017.8305143.
- [20] Y. P. Loh, X. Liang, and C. S. Chan, (2019) “Low-light image enhancement using Gaussian Process for features retrieval" Signal Processing: Image Communication 74: 175–190. DOI: 10.1016/j.image.2019.02.001.
- [21] N. Zhao, X. Wang, and S.-L. Yin, (2021) “Research of fire smoke detection algorithm based on video" International Journal of Electronics and Information Engineering 13(1): 1–9. DOI: 10.6636/IJEIE.202103_13(1).01.
- [22] K. G. Lore, A. Akintayo, and S. Sarkar, (2017) “LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement" Pattern Recognition 61: 650–662. DOI: 10.1016/j.patcog.2016.06.008.
- [23] L. Tao, C. Zhu, G. Xiang, Y. Li, and X. Xie. “LLCNN: A convolutional neural network for low-light image enhancement”. In: Visual Communications & Image Processing. 2018. DOI: 10.1109/VCIP.2017.8305143.
- [24] X. Guo, Y. Li, and H. Ling, (2017) “LIME: Low-Light Image Enhancement via Illumination Map Estimation" IEEE Transactions on Image Processing 26: 982–993. DOI: 10.1109/TIP.2016.2639450.
- [25] L. Tao, C. Zhu, J. Song, T. Lu, and X. Xie. “Low-light image enhancement using CNN and bright channel prior”. In: 2017 IEEE International Conference on Image Processing (ICIP). 2018. DOI: 10.1109/ICIP.2017. 8296876.
- [26] C. Wang, Y. Huang, Y. Zou, and Y. Xu, (2021) “FWBNet:Front White Balance Network for Color Shift Correction in Single Image Dehazing via Atmospheric Light Estimation": DOI: 10.1109/ICASSP39728.2021.9414200.
- [27] Y. Jiang, X. Gong, D. Liu, Y. Cheng, and Z. Wang, (2021) “EnlightenGAN: Deep Light Enhancement Without Paired Supervision" IEEE Transactions on Image Processing 30: 2340–2349. DOI: 10.1109/TIP.2021.3051462.
- [28] S. W. Cho, N. R. Baek, J. H. Koo, and K. R. Park, (2020) “Modified Perceptual Cycle Generative Adversarial Network-Based Image Enhancement for Improving Accuracy of Low Light Image Segmentation" IEEE Access 9: 6296–6324. DOI: 10.1109/ACCESS.2020.3048366.
- [29] J. Causey, J. Stubblefield, J. Qualls, J. Fowler, and X. Huang, (2022) “An Ensemble of U-Net Models for Kidney Tumor Segmentation with CT images" IEEE/ACM Transactions on Computational Biology and Bioinformatics 19(3): 1387–1392. DOI: 10.1109/TCBB.2021.3085608.
- [30] N. Martinel, G. L. Foresti, and C. Micheloni, (2020) “Deep Pyramidal Pooling With Attention for Person ReIdentification" IEEE Transactions on Image Processing 29: 7306–7316. DOI: 10.1109/TIP.2020.3000904.
- [31] Z. Qu, J. Mei, L. Liu, and D. Y. Zhou, (2020) “Crack Detection of Concrete Pavement With Cross-Entropy Loss Function and Improved VGG16 Network Model" IEEE Access 8: 54564–54573. DOI: 10.1109/ACCESS.2020.2981561.
- [32] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, (2017) “Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations" 10553: 240–248. DOI: 10.1007/978-3-319-67558-9_28.
- [33] Q. Yang, Y. Wu, D. Cao, M. Luo, and T. Wei, (2020) “A Lowlight Image Enhancement Method Learning from Both Paired and Unpaired Data by Adversarial Training" Neurocomputing 433: 83–95. DOI: 10.1016/j.neucom.2020.12.057.
- [34] Y. Zhang, X. Di, B. Zhang, R. Ji, and C. Wang, (2020) “Better Than Reference In Low Light Image Enhancement: Conditional Re-Enhancement Networks": DOI: 10.1109/TIP.2021.3135473.
- [35] W. Yang, S. Wang, Y. Fang, Y. Wanga, and J. Liu, (2021) “Band Representation-Based Semi-Supervised Low-Light Image Enhancement: Bridging the Gap Between Signal Fidelity and Perceptual Quality" IEEE Transactions on Image Processing 30: 461–3473. DOI: 10.1109/TIP.2021.3062184.
- [36] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong, (2020) “Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement" 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 1777–1786.