- [1] R. T. Rockafellar. Convex analysis. 18. Princeton uni versity press, 1970.
- [2] I. Ekeland and R. Temam. Convex analysis and vari ational problems. Society for Industrial and Applied Mathematics, 1999.
- [3] C.Zalinescu. Convex analysis in general vector spaces. World scientific, 2002.
- [4] S.N.Majeed,(2023)“StrongFenchelDualityForEvenly Convex Optimization Problems" Journal of Applied Science and Engineering 26(12): 1723–1729. DOI: 10.6180/jase.202312_26(12).0004.
- [5] C.Niculescu and L.-E. Persson. Convex functions and their applications. 23. Springer, 2006.
- [6] G.Cristescu and L. Lupsa. Non-connected convexities and applications. 68. Springer Science & Business Me dia, 2013.
- [7] M. A. Hanson, (1981) “On sufficiency of the KuhnTucker conditions" Journal of Mathematical Analysis and Applications 80(2): 545–550. DOI: 10.1016/0022-247X(81)90123-2.
- [8] R.Nehse,(1979) “Problems in connection with the Hahn Banach-Theorem" Proc. of the Summer-school" Non linear Analysis", Berlin:
- [9] B. Craven, (1981) “Invex functions and constrained local minima" Bulletin of the Australian Math ematical society 24(3): 357–366. DOI: 10.1017/S0004972700004895.
- [10] B. Craven. Duality for generalized convex fractional pro grams. Academic Press New York, 1981, 473–489.
- [11] A. Ben-Israel and B. Mond, (1986) “What is invex ity?" The ANZIAM Journal 28(1): 1–9. DOI: 10.1017/S0334270000005142.
- [12] M.HansonandB.Mond,(1987)“Convextransformable programming problems and invexity" Journal of Infor mation and Optimization Sciences 8(2): 201–207. DOI: 10.1080/02522667.1987.10698886.
- [13] T. Weir and B. Mond, (1988) “Pre-invex functions in multiple objective optimization" Journal of Mathemat ical Analysis and applications 136(1): 29–38. DOI: 10.1016/0022-247X(88)90113-8.
- [14] S. Mohan and S. Neogy, (1995) “On invex sets and preinvex functions" Journal of Mathematical Analy sis and Applications 189(3): 901–908. DOI: 10.1006/jmaa.1995.1057.
- [15] M.A.NoorandK.I. Noor, (2006) “Some characteriza tions of strongly preinvex functions" Journal of Mathe matical Analysis and Applications 316(2): 697–706. DOI: 10.1016/j.jmaa.2005.05.014.
- [16] M.A.Noor, (2007) “On Hadamard integral inequalities involving two log-preinvex functions" J. Inequal. Pure Appl. Math 8(3): 1–14.
- [17] S.-l. Chen, N.-J. Huang, D. O’Regan, et al., (2014) “Geodesic B-preinvex functions and multiobjective opti mization problems on Riemannian manifolds" Journal of Applied Mathematics 2014: DOI: 10.1155/2014/ 524698.
- [18] S. N. Majeed, (2019) “Fuzzy preinvexity via ranking value functions with applications to fuzzy optimization problems" Journal of Interdisciplinary Mathemat ics 22(8): 1485–1494. DOI: 10.1080/09720502.2019.1706846.
- [19] M. B. Khan, M. A. Noor, L. Abdullah, and Y.-M. Chu,(2021)“Somenewclassesofpreinvex fuzzy-interval valued functions and inequalities" International Jour nal of Computational Intelligence Systems 14(1): 1403–1418. DOI: 10.2991/ijcis.d.210409.001.
- [20] M.Khan,G.Santos-García,M.Noor,andM.Soliman, (2022) “New class of preinvex fuzzy mappings and related inequalities" Mathematics 10: 3753. DOI: 10.3390/math10203753.
- [21] A. A. Shaikh, A. Iqbal, and C. K. Mondal, (2018) “Some results on φ-convex functions and geodesic φ convex functions" Differential Geometry- Dynamical System 20: 159–169.
- [22] A. A. Shaikh, C. K. Mondal, and I. Ahmad, (2019) “Non-existence of certain type of convex functions on a Riemannian manifold with a pole" Journal of Geometry and Physics 140: 104–110. DOI: 10.1016/j.geomphys.2019.02.006.
- [23] A.A.Shaikh, R. P. Agarwal, and C. K. Mondal, (2020) “Geodesic sandwich theorem with an application" Mathe matical Inequalities and Applications 23: 161–167. DOI: 10.7153/mia-2020-23-13.
- [24] E. Youness, (1999) “E-convex sets, E-convex functions, and E-convex programming" Journal of Optimization Theory and Applications 102: 439–450. DOI: 10.1023/A:1021792726715.
- [25] E. A. Youness et al., (2001) “Stability in E-convex pro gramming" International Journal of Mathematics and Mathematical Sciences 26: 643–648. DOI: 10.1155/S0161171201006317.
- [26] E. A. Youness, (2001) “Optimality criteria in E-convex programming" Chaos, Solitons & Fractals 12(9): 1737 1745. DOI: 10.1016/S0960-0779(00)00036-9.
- [27] A. Megahed, H. Gomma, E. Youness, and A. El Banna, (2013) “A study on the duality of E-convex non linear programming problem" International Journal of Mathematical Analysis 7(4): 175–185. DOI: 10.12988/ijma.2013.13015.
- [28] A. E.-M. A. Megahed, H. G. Gomma, E. A. Youness, andA.-Z.H.El-Banna,(2013)“Optimality conditions of E-convex programming for an E-differentiable function" Journal of Inequalities and Applications 2013: 1–11. DOI: 10.1186/1029-242X-2013-246.
- [29] X. Chen, (2002) “Some properties of semi-E-convex func tions" Journal of Mathematical Analysis and Appli cations 275(1): 251–262. DOI: 10.1016/S0022-247X(02)00325-6.
- [30] M. Soleimani-Damaneh, (2011) “E-convexity and its generalizations" International Journal of Computer Mathematics 88(16): 3335–3349. DOI: 10.1080/00207160.2011.589899.
- [31] N. Abdulaleem. “E-invexity and generalized E invexity in E-differentiable multiobjective program ming”. In: ITM Web of Conferences. 24. EDP Sciences. 2019, 01002. DOI: 10.1051/itmconf/20192401002.
- [32] S. Majeed and A. Enad. “On semi strongly (E, F) convex functions and semi strongly (E, F)-convex optimization problems”. In: Journal of Physics: Confer ence Series. 1879. 2. IOP Publishing. 2021, 022110. DOI: 10.1088/1742-6596/1879/2/022110.
- [33] W. Saleh, (2022) “Hermite–Hadamard type inequality for (E, F)-convex functions and geodesic (E, F)-convex functions" RAIRO-Operations Research 56(6): 4181–4189. DOI: 10.1051/ro/2022185.
- [34] M. Elbrolosy, (2022) “Semi-(E, F)-convexity in com plex programming problems" AIMS Mathematics 7(6): 11119–11131. DOI: 10.3934/math.2022621.
- [35] R.E. HazimandS.N.Majeed, (2023) “Some properties of semi (p, e)-convexity" Journal of Interdisciplinary Mathematics 26(4): 629–635. DOI: 10.47974/JIM 1481.
- [36] N.Abdulaleem, (2023) “Optimality and duality for E differentiable multiobjective programming problems in volving E-type functions" Journal of Industrial and Management Optimization 19(2): 1513–1527. DOI: 10.3934/jimo.2022004.
- [37] N.Abdulaleem, (2023) “E-univex sets, E-univex func tions and E-differentiable E-univex programming" Re sults in Mathematics 78(1): 3. DOI: 10.1007/s00025-022-01775-5.
- [38] N. Abdulaleem, (2023) “Optimality conditions for a class of E-differentiable vector optimization problems with interval-valued objective functions under E-invexity" International Journal of Computer Mathematics 100(7): 1601–1624. DOI: 10.1080/00207160.2023.2207389.
- [39] C.Fulga and V. Preda, (2009) “Nonlinear programming with E-preinvex and local E-preinvex functions" Euro pean Journal of Operational Research 192(3): 737 743. DOI: 10.1016/j.ejor.2007.11.056.
- [40] Z.Luoetal., (2011) “Some properties of semi-E-preinvex maps in Banach spaces" Nonlinear Analysis: Real World Applications 12(2): 1243–1249. DOI: 10.1016/j.nonrwa.2010.09.019.
- [41] S. N. Majeed, (2019) “Strongly and Semi Strongly E_h b-Vex Functions: Applications to Optimization Problems" Iraqi Journal of Science: 2022–2029. DOI: 10.24996/ijs.2019.60.9.16.
- [42] N.Abdulaleem, (2021) “EB-invexity in E-differentiable mathematical programming" Results in Control and Optimization 4: 100046. DOI: 10.1016/j.rico.2021.100046.
- [43] A.A.Shaikh, C. K.Mondal, andR.P. Agarwal, (2021) “Some properties of geodesic (α, E)-preinvex functions on Riemannian manifolds" Khayyam Journal of Mathe matics 7(2): 201–210. DOI: 10.22034/KJM.2020.220226.1717.
- [44] A. Iqbal and P. Kumar, (2023) “Geodesic E-prequasi invex function and its applications to non-linear program ming problems" Numerical Algebra, Control and Op timization 13(1): 1–10. DOI: 10.3934/naco.2021040.
- [45] G. Alirezaei and R. Mathar. “On exponentially con cave functions and their impact in information the ory”. In: 2018 Information Theory and Applications Workshop (ITA). IEEE. 2018, 1–10. DOI: 10.1109/ITA.2018.8503202.
- [46] S.PalandT.-K.L.Wong,(2018)“Exponentially concave functions and a new information geometry" The Annals of probability 46(2): 1070–1113.
- [47] M.A.NoorandK.I.Noor, (2019) “On exponentially convex functions" JOURNAL OF ORISSA MATHE MATICALSOCIETY975:2323.
- [48] M.NoorandK.Noor, (2019) “Strongly exponentially convex functions and their properties" Journal of Ad vanced Mathematical Studies 12(2): 177–185.
- [49] M.NoorandK.Noor, (2019) “Some properties of differ entiable exponential convex functions" preprint, Math, Deparment, COMSATS university, Islamabad, Pak istan:
- [50] M. A. Noor and K. I. Noor, (2019) “New classes of strongly exponentially preinvex functions" AIMS Math 4(6): 1554–1568. DOI: 10.3934/math.2019.6.1554.
- [51] M. A. Noor, K. I. Noor, and T. M. Rassias, (2021) “Relative strongly exponentially convex functions" Non linear Analysis and Global Optimization: 357–371. DOI: 10.1007/97.
- [52] J. Bisht, N. Sharma, S. K. Mishra, and A. Hamdi, (2023) “Some new integral inequalities for higher-order strongly exponentially convex functions" Journal of In equalities and Applications 2023(1): 41. DOI: 10. 1186/s13660-023-02952-y.
- [53] M.A.NoorandK.I. Noor, (2019) “Some properties of exponentially preinvex functions" Facta Universitatis, Series: Mathematics and Informatics: 941–955. DOI: 10.22190/FUMI1905941N. [54] N. Abdulaleem, (2024) “Exponentially E-convex vec tor optimization problems" Journal of Industrial and Management Optimization: 0–0. DOI: 10.3934/jimo.2023164.