- [1] P.M.A.HasanandN.A.Sulaiman,(2020)“Homo topyperturbationmethodandconvergenceanalysisforthe linearmixedVolterra-Fredholmintegralequations"Iraqi JournalofScience61(2):409–415.DOI:10.24996/ijs. 2020.61.2.19.
- [2] J.-H. He, (1999) “Homotopy perturbation technique" Computer methods in applied mechanics and en gineering 178(3-4): 257–262. DOI: 10.1016/S0045-7825(99)00018-3.
- [3] A.Beléndez, C. Pascual, T. Beléndez, and A. Hernan dez, (2009) “Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturba tion method" Nonlinear Analysis: Real World Appli cations 10(1): 416–427. DOI: 10.1016/j.nonrwa.2007.10.002.
- [4] M. Chowdhury and I. Hashim, (2009) “Application of multistage homotopy-perturbation method for the so lutions of the Chen system" Nonlinear Analysis: Real World Applications 10(1): 381–391. DOI: 10.1016/j.nonrwa.2007.09.014.
- [5] M. Miansari, D. Ganji, and M. Miansari, (2008) “Ja cobi elliptic function solutions of the (1+1)-dimensional dispersive long wave equation by homotopy perturbation method" Numerical Methods for Partial Differen tial Equations: An International Journal 24(6): 1361 1370. DOI: 10.1002/num.20321.
- [6] S. H. Nia, A. Ranjbar, D. Ganji, H. Soltani, and J. Ghasemi, (2008) “Maintaining the stability of nonlin ear differential equations by the enhancement of HPM" Physics Letters A 372(16): 2855–2861. DOI: 10.1016/j.physleta.2007.12.054.
- [7] O.Abdulaziz, I. Hashim, and M. Chowdhury, (2008) “Solving variational problems by homotopy–perturbation method" International journal for numerical meth ods inengineering 75(6): 709–721. DOI: 10.1002/nme.2279.
- [8] X.-J. Yang, H. Srivastava, and C. Cattani, (2015) “Lo cal fractional homotopy perturbation method for solving fractal partial differential equations arising in mathemati cal physics" Romanian Reports in Physics 67(3): 752–761.
- [9] J.-H. He, (2006) “Homotopy perturbation method for solving boundary value problems" Physics letters A 350(1-2): 87–88. DOI: 10.1016/j.physleta.2005.10.005.
- [10] A. Yildirim, (2009) “Homotopy perturbation method for the mixed Volterra–Fredholm integral equations" Chaos, Solitons & Fractals 42(5): 2760–2764. DOI: 10.1016/j.chaos.2009.03.147.
- [11] J.-H. He, (1999) “Variational iteration method–a kind of non-linear analytical technique: some examples" In ternational journal of non-linear mechanics 34(4): 699–708. DOI: 10.1016/S0020-7462(98)00048-1.
- [12] M.Inokuti, H. Sekine, and T. Mura, (1978) “General use of the Lagrange multiplier in nonlinear mathematical physics" Variational method in the mechanics of solids 33(5): 156–162.
- [13] F. S. Fadhel and H. M. Sagban, (2021) “Approximate solution of linear fuzzy initial value problems using mod ified variaional iteration method" Al-Nahrain Journal of Science 24(4): 32–39. DOI: 10.22401/ANJS.24.4.05.
- [14] X.-J. Yang and D. Baleanu, (2013) “Fractal heat conduc tion problem solved by local fractional variation iteration method" Therm. Sci. 17(2): 625–628. DOI: 10.2298/TSCI121124216Y.
- [15] S. Chakraverty, N. Mahato, P. Karunakar, and T. D. Rao. Advanced numerical and semi-analytical methods for differential equations. John Wiley & Sons, 2019.
- [16] M.S. Ismael, F. S. Fadhel, and A. Al-Fayadh, (2020) “Approximate Solution of Multi-Term Fractional Order Delay Differential Equations Using Homotopy Perturba tion Method" Al-Nahrain Journal of Science 23(2): 60–66. DOI: 10.22401/ANJS.23.2.09.
- [17] F. Shakeri and M. Dehghan, (2008) “Solution of de lay differential equations via a homotopy perturbation method" Mathematical and computer Modelling 48(3-4): 486–498. DOI: 10.1016/j.mcm.2007.09.016.
- [18] A. A.Abdulsahib, F. S. Fadhel, and J. H. Eidi, (2024) “Approximate Solution of Linear Fuzzy Random Ordinary Differential Equations Using Laplace Variational Iteration Method" Iraqi Journal of Science: 804–817. DOI: 10.24996/ijs.2024.65.2.18.
- [19] O. M.Atyia, F. S. Fadhel, and M. H. Alobaidi, (2023) “Using Variational Iteration Method for Solving Linear Fuzzy Random Ordinary Differential Equations" Mathe matical Modelling of Engineering Problems 10(4): 1457–1466. DOI: 10.18280/mmep.100442.
- [20] A. Kareem and S. Al-Azzawi, (2021) “A stochastic differential equations model for the spread of coronavirus COVID-19: (the case of Iraq)" Iraqi Journal of Science 62(3): 1025–1035. DOI: 10.24996/ijs.2021.62.3.31.
- [21] A. Abdulsahib, F. Fadhel, and S. Abid, (2019) “Mod ified approach for solving random ordinary differential equations" Journal of Theoretical and Applied Infor mation Technology 97(13): 3574–3584.
- [22] A.K.Hussain, N. Rusli, F. S. Fadhel, and Z. R. Yahya. “Solution of one-dimensional fractional order partial integro-differential equations using variational itera tion method”. In: AIP Conference Proceedings. 1775. 1. AIP Publishing. 2016. DOI: 10.1063/1.4965216.
- [23] S. Abbasbandy, M. Otadi, and M. Mosleh, (2008) “Minimal solution of general dual fuzzy linear systems" Chaos, Solitons & Fractals 37(4): 1113–1124. DOI: 10.1016/j.chaos.2006.10.045.
- [24] S. Mauthner, (1998) “Step size control in the numerical solution of stochastic differential equations" Journal of computational and applied mathematics 100(1): 93 109. DOI: 10.1016/S0377-0427(98)00139-3.
- [25] H.M.Srivastava, R. Chaharpashlou, R. Saadati, and C. Li, (2022) “A fuzzy random boundary value problem" Axioms 11(8): 414. DOI: 10.3390/axioms11080414.
- [26] M.T. Malinowski, (2016) “Stochastic fuzzy differential equations of a nonincreasing type" Communications in Nonlinear Science and Numerical Simulation 33: 99–117. DOI: 10.1016/j.cnsns.2015.07.001.
- [27] A. Kandel. Fuzzy mathematical techniques with applica tions. Addison-Wesley Longman Publishing Co., Inc., 1986.
- [28] L. Arnold. Stochastic differential equations: theory and applications. John Wiley and Sons, Inc., 1974.
- [29] R. Moore. Interval analysis. 4. Englewood Cliffs: Prentice-Hall, 1966, 8–13.
- [30] M. T. Malinowski, (2013) “Some properties of strong solutions to stochastic fuzzy differential equations" Infor mation Sciences 252: 62–80. DOI: 10.1016/j.ins.2013.02.053.
- [31] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. Guirao, and T. M. Jawa, (2022) “Fuzzy-interval inequal ities for generalized preinvex fuzzy interval valued func tions" Math. Biosci. Eng. 19: 812–835. DOI: 10.3934/mbe.2022037.
- [32] A. Alderremy, J. Gómez-Aguilar, S. Aly, and K. M. Saad, (2021) “A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method" Results in Physics 21: 103773. DOI: 10.1016/j.rinp.2020.103773.
- [33] H.M.Srivastava, K. M. Saad, and W. M. Hamanah, (2022) “Certain new models of the multi-space fractal fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations" Mathematics 10(7): 1089. DOI: 10.3390/math10071089.
- [34] M.Alqhtani,K.M.Saad,R.Zarin,A.Khan,andW.M. Hamanah, (2024) “Qualitative behavior of a highly non linear Cutaneous Leishmania epidemic model under con vex incidence rate with real data" Mathematical Bio sciences and Engineering 21(2): 2084–2120. DOI: 10.3934/mbe.2024092.
- [35] S. Panda, J. K. Dash, and G. B. Panda, (2023) “Stochas tic differential equation with fuzzy coefficients" IAENG International Journal of Applied Mathematics53(1): 66–75.
- [36] F. S. Fadhel, J. H. Eidi, H. M. Wali, et al., (2021) “Con traction mapping theorem in partial fuzzy metric spaces" Journal of Applied Science and Engineering 25(2): 353–360. DOI: 10.6180/jase.202204_25(2).0020.
- [37] J. Kider and N. Kadhum, (2019) “Properties of fuzzy compact linear operators on fuzzy normed spaces, Baghdad Sci" J 16(1): 104–110. DOI: 10.21123/bsj.2019.16.1. 0104.
- [38] R. I. Ali and E. A. Hussein, (2020) “Some Properties of Fuzzy Anti-Inner Product Spaces" Iraqi Journal of Science 61(11): 3053–3058. DOI: 10.24996/ijs.2020.61. 11.26.
- [39] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduc tion to interval analysis. SIAM, 2009.
- [40] S. Chakraverty, S. Tapaswini, and D. Behera. Fuzzy differential equations and applications for engineers and scientists. CRC Press, 2016. DOI: 10.1201/9781315372853.
- [41] L.Stefanini and B.Bede, (2009) “Generalized Hukuhara differentiability of interval-valued functions and interval differential equations" Nonlinear Analysis: Theory, Methods & Applications 71(3-4): 1311–1328. DOI: 10.1016/j.na.2008.12.005.
- [42] M. H. Suhhiem, (2017) “Artificial Neural network for solving fuzzy differential equations under generalized H derivation" International Journal 5(1): 1–9. DOI: 10.12691/ijpdea-5-1-1.
- [43] Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, and M.-D. Jiménez-Gamero, (2013) “Calculus for interval-valued functions using generalized Hukuhara derivative and applications" Fuzzy Sets and Systems 219: 49–67. DOI: 10.1016/j.fss.2012.12.004.
- [44] M.T. Malinowski, (2012) “Itô type stochastic fuzzy dif ferential equations with delay" Systems & Control Let ters 61(6): 692–701. DOI: 10.1016/j.sysconle.2012.02.012.
- [45] R. I. Sabri and B. A. Ahmed, (2023) “On α − φ − Fuzzy Contractive Mapping in Fuzzy Normed Space" Baghdad Science Journal: DOI: 10.21123/bsj.2023.2509.
- [46] N. R. Kareem, F. S. Fadhel, and S. Al-Nassir, (2023) “Existence and Uniqueness Theorem of Fuzzy Stochastic Ordinary Differential Equations" Iraqi Journal of Sci ence 64(11): 5878–5886. DOI: 10.24996/ijs.2023.64.11.33.
- [47] R. I. Sabri and B. A. Ahmed, (2023) “Another Type of Fuzzy Inner Product Space" Iraqi Journal of Science 64(4): 1853–1861. DOI: 10.24996/ijs.2023.64.4.25.
- [48] J.-C. Cortés, J.-V. Romero, M.-D. Roselló, and C. San tamaría, (2011) “Solving random diffusion models with nonlinear perturbations by the Wiener–Hermite expan sion method" Computers & Mathematics with Appli cations 61(8): 1946–1950. DOI: 10.1016/j.camwa.2010.07.057.
- [49] J. C. Butcher. The numerical analysis of ordinary differ ential equations: Runge-Kutta and general linear methods. Wiley-Interscience, 1987.