- [1] D. A. Akinpelu, O. A. Adekoya, P. O. Oladoye, C. C. Ogbaga, and J. A. Okolie, (2023) “Machine learning applications in biomass pyrolysis: from biorefinery to endof-life product management" Digital Chemical Engineering 8: 100103. DOI: 10.1016/j.dche.2023.100103.
- [2] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, and P. Sareh, (2021) “Crystal structure algorithm (CryStAl): a metaheuristic optimization method" IEEE Access 9: 71244–71261. DOI: 10.1109/ACCESS.2021.3079161.
- [3] T. Sa˘g, (2022) “PVS: a new population-based vortex search algorithm with boosted exploration capability using polynomial mutation" Neural Computing and Applications 34: 18211–18287. DOI: 10.1007/s00521-022-07671-x.
- [4] A. Shafizadeh, H. Shahbeik, S. Rafiee, A. Moradi, M. Shahbaz, M. Madadi, C. Li, W. Peng, M. Tabatabaei, and M. Aghbashlo, (2023) “Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production" Fuel 347: 128467. DOI: 10.1016/j.fuel.2023.128467.
- [5] F. Elmaz, Ö. Yücel, and A. Y. Mutlu, (2020) “Predictive modeling of biomass gasification with machine learningbased regression methods" Energy 191: 116541. DOI: 10.1016/j.energy.2019.116541.
- [6] H. Ullah, S. Khan, B. Chen, A. Shahab, L. Riaz, L. Lun, and N. Wu, (2023) “Machine learning approach to predict adsorption capacity of Fe-modified biochar for selenium" Carbon Research 2: 29. DOI: 10.1007/s44246-023-00061-5.
- [7] M. S. Zaghloul, R. A. Hamza, O. T. Iorhemen, and J. H. Tay, (2020) “Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors" Journal of Environmental Chemical Engineering 8: 103742. DOI: 10.1016/j.jece.2020.103742.
- [8] M. Awad, R. Khanna, M. Awad, and R. Khanna, (2015) “Support vector regression" Efficient learning machines: Theories, concepts, and applications for engineers and system designers: 67–80. DOI: 10.1007/978-1-4302-5990-9_4.
- [9] J. Li, M. Suvarna, L. Pan, Y. Zhao, and X. Wang, (2021) “A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification" Applied Energy 304: 117674. DOI: 10.1016/j.apenergy.2021.117674.
- [10] S. Shenbagaraj, P. K. Sharma, A. K. Sharma, G. Raghav, K. B. Kota, and V. Ashokkumar, (2021) “Gasification of food waste in supercritical water: An innovative synthesis gas composition prediction model based on Artificial Neural Networks" International Journal of Hydrogen Energy 46: 12739–12757. DOI: 10.1016/j.ijhydene.2021.01.122.
- [11] E. E. Ozbas, D. Aksu, A. Ongen, M. A. Aydin, and H. K. Ozcan, (2019) “Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms" International Journal of Hydrogen Energy 44: 17260–17268. DOI: 10.1016/j.ijhydene.2019.02.108.
- [12] J. George, P. Arun, and C. Muraleedharan, (2018) “Assessment of producer gas composition in air gasification of biomass using artificial neural network model" International Journal of Hydrogen Energy 43: 9558–9568. DOI: 10.1016/j.ijhydene.2018.04.007.
- [13] M. Ozonoh, B. O. Oboirien, A. Higginson, and M. O. Daramola, (2020) “Performance evaluation of gasification system efficiency using artificial neural network" Renewable Energy 145: 2253–2270. DOI: 10.1016/j.renene.2019.07.136.
- [14] P. V. Gopirajan, K. P. Gopinath, G. Sivaranjani, and J. Arun, (2021) “Optimization of hydrothermal gasification process through machine learning approach: Experimental conditions, product yield and pollution" Journal of Cleaner Production 306: 127302. DOI: 10.1016/j.jclepro.2021.127302.
- [15] A. Lee, P. Taylor, J. Kalpathy-Cramer, and A. Tufail, (2017) “Machine learning has arrived!" Ophthalmology 124: 1726–1728. DOI: 10.1016/j.ophtha.2017.08.046.
- [16] S. L. Narnaware and N. L. Panwar, (2022) “Biomass gasification for climate change mitigation and policy framework in India: A review" Bioresource Technology Reports 17: 100892. DOI: 10.1016/j.biteb.2021.100892.
- [17] Z. Ceylan and S. Ceylan. Application of machine learning algorithms to predict the performance of coal gasification process. Elsevier, 2021, 165–186. DOI: 10.1016/ B978-0-12-821092-5.00003-6.
- [18] S. Ascher, W. Sloan, I. Watson, and S. You, (2022) “A comprehensive artificial neural network model for gasification process prediction" Applied Energy 320: 119289. DOI: 10.1016/j.apenergy.2022.119289.
- [19] Ö. Tezer, N. Karaba˘g, A. Öngen, C. Ö. Çolpan, and A. Ayol, (2022) “Biomass gasification for sustainable energy production: A review" International Journal of Hydrogen Energy 47: 15419–15433. DOI: 10.1016/j.ijhydene.2022.02.158.
- [20] Y. Xiao, S. Xu, Y. Song, Y. Shan, C. Wang, and G. Wang, (2017) “Biomass steam gasification for hydrogenrich gas production in a decoupled dual loop gasification system" Fuel Processing Technology 165: 54–61. DOI: 10.1016/j.fuproc.2017.05.013.
- [21] D. Singh. Advances in industrial waste management. Elsevier, 2023, 385–416. DOI: 10.1016/B978-0-323-90463-6.00027-0.
- [22] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, (2014) “Renewable energy resources: Current status, future prospects and their enabling technology" Renewable and sustainable energy reviews 39: 748–764. DOI: 10.1016/j.rser.2014.07.113.
- [23] D. Baruah, D. C. Baruah, and M. K. Hazarika, (2017) “Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers" Biomass and Bioenergy 98: 264–271. DOI: 10.1016/j.biombioe.2017.01.029.
- [24] V. N. Vapnik and V. N. Vapnik, (2000) “Controlling the generalization ability of learning processes" The Nature of Statistical Learning Theory: 93–122. DOI: 10.1007/ 978-1-4757-3264-1_5.
- [25] C. Loha, H. Chattopadhyay, and P. K. Chatterjee, (2013) “Energy generation from fluidized bed gasification of rice husk" Journal of renewable and sustainable energy 5: DOI: 10.1063/1.4816496.
- [26] K. G. Mansaray, A. E. Ghaly, A. M. Al-Taweel, F. Hamdullahpur, and V. I. Ugursal, (1999) “Air gasification of rice husk in a dual distributor type fluidized bed gasifier" Biomass and bioenergy 17: 315–332. DOI: 10.1016/S0961-9534(99)00046-X.
- [27] S. Sarker, F. Bimbela, J. L. Sánchez, and H. K. Nielsen, (2015) “Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets" Energy Conversion and Management 91: 451– 458. DOI: 10.1016/j.enconman.2014.12.034.
- [28] S. Sarker and H. K. Nielsen, (2015) “Assessing the gasification potential of five woodchips species by employing a lab-scale fixed-bed downdraft reactor" Energy Conversion and Management 103: 801–813. DOI: 10.1016/j.enconman.2015.07.022.
- [29] S. Kaewluan and S. Pipatmanomai, (2011) “Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed" Fuel Processing Technology 92: 671–677. DOI: 10.1016/j.fuproc.2010.11.026.
- [30] J. M. D. Andres, A. Narros, and M. E. Rodríguez, (2011) “Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst" Fuel Processing Technology 92: 433–440. DOI: 10.1016/j.fuproc.2010.10.006.
- [31] P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen, and J. X. Zhu, (2004) “An experimental study on biomass air–steam gasification in a fluidized bed" Bioresource technology 95: 95–101. DOI: 10.1016/j.biortech.2004.02.003.
- [32] P. Iovane, A. Donatelli, and A. Molino, (2013) “Influence of feeding ratio on steam gasification of palm shells in a rotary kiln pilot plant. Experimental and numerical investigations" Biomass and Bioenergy 56: 423–431. DOI: 10.1016/j.biombioe.2013.05.025.
- [33] Z. Zhang and S. Pang, (2017) “Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier" Fuel 188: 628–635. DOI: 10.1016/j.fuel.2016.10.074.
- [34] S. Fremaux, S.-M. Beheshti, H. Ghassemi, and R. Shahsavan-Markadeh, (2015) “An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed" Energy Conversion and Management 91: 427–432. DOI: 10.1016/j.enconman.2014.12.048.
- [35] J. Herguido, J. Corella, and J. Gonzalez-Saiz, (1992) “Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock" Industrial & engineering chemistry research 31: 1274–1282.
- [36] P. P. Dutta, V. Pandey, A. R. Das, S. Sen, and D. C. Baruah, (2014) “Down draft gasification modelling and experimentation of some indigenous biomass for thermal applications" Energy Procedia 54: 21–34. DOI: 10.1016/j.egypro.2014.07.246.
- [37] E. Biagini, F. Barontini, and L. Tognotti, (2016) “Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor" Bioresource technology 201: 156–165. DOI: 10.1016/j.biortech.2015.11.057.
- [38] T. Song, J. Wu, L. Shen, and J. Xiao, (2012) “Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds" Biomass and bioenergy 36: 258–267. DOI: 10.1016/j.biombioe.2011.10.021.
- [39] R. Yin, R. Liu, J. Wu, X. Wu, C. Sun, and C. Wu, (2012) “Influence of particle size on performance of a pilot-scale fixed-bed gasification system" Bioresource technology 119: 15–21. DOI: 10.1016/j.biortech.2012.05.085.
- [40] I. Narvaez, A. Orio, M. P. Aznar, and J. Corella, (1996) “Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas" Industrial & Engineering Chemistry Research 35: 2110–2120. DOI: 10.1021/ie9507540.
- [41] P. Lahijani and Z. A. Zainal, (2011) “Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study" Bioresource technology 102: 2068–2076. DOI: 10.1016/j.biortech.2010.09.101.
- [42] C. Gai and Y. Dong, (2012) “Experimental study on non-woody biomass gasification in a downdraft gasifier" International Journal of hydrogen energy 37: 4935– 4944. DOI: 10.1016/j.ijhydene.2011.12.031.
- [43] H. Liu, J. Hu, H. Wang, C. Wang, and J. Li, (2012) “Experimental studies of biomass gasification with air" Journal of natural gas chemistry 21: 374–380. DOI: 10.1016/S1003-9953(11)60379-4.
- [44] G. Ruoppolo, P. Ammendola, R. Chirone, and F. Miccio, (2012) “H2-rich syngas production by fluidized bed gasification of biomass and plastic fuel" Waste Management 32: 724–732. DOI: 10.1016/j.wasman.2011.12.004.
- [45] A. Erkiaga, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, (2014) “Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor" Chemical engineering journal 237: 259–267. DOI: 10.1016/j.cej.2013.10.018.
- [46] C. V. Huynh and S.-C. Kong, (2013) “Performance characteristics of a pilot-scale biomass gasifier using oxygenenriched air and steam" Fuel 103: 987–996. DOI: 10.1016/j.fuel.2012.09.033.
- [47] H. Karatas and F. Akgun, (2018) “Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres" Fuel 214: 285–292. DOI: 10.1016/j.fuel.2017.10.061.
- [48] J. Wang, G. Cheng, Y. You, B. Xiao, S. Liu, P. He, D. Guo, X. Guo, and G. Zhang, (2012) “Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite" international journal of hydrogen energy 37: 6503– 6510. DOI: 10.1016/j.ijhydene.2012.01.070.
- [49] Z. Khan, S. Yusup, M. M. Ahmad, and B. L. F. Chin, (2014) “Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification" Energy Conversion and Management 87: 1224–1230. DOI: 10.1016/j.enconman.2014.03.024.
- [50] S. Luo, Y. Zhou, and C. Yi, (2012) “Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor" Energy 44: 391–395. DOI: 10.1016/j. energy.2012.06.016.
- [51] M. Baratieri, E. Pieratti, T. Nordgreen, and M. Grigiante, (2010) “Biomass gasification with dolomite as catalyst in a small fluidized bed experimental and modelling analysis" Waste and Biomass Valorization 1: 283–291. DOI: 10.1007/s12649-010-9034-6.
- [52] U. Arena, L. Zaccariello, and M. L. Mastellone, (2010) “Fluidized bed gasification of waste-derived fuels" Waste Management 30: 1212–1219. DOI: 10.1016/j.wasman. 2010.01.038.
- [53] U. Arena and F. D. Gregorio, (2014) “Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor" Fuel 117: 528–536. DOI: 10.1016/j.fuel.2013.09.044.
- [54] G. S. Margarat, S. Kumar, and S. Rajan. Forecasting wind energy production using machine learning techniques. 2023. DOI: 10.1051/e3sconf/202338701007.