Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Baofu GongThis email address is being protected from spambots. You need JavaScript enabled to view it.

Library, Criminal Investigation Police University of China, Shen Yang, 110854, China


 

 

Received: March 28, 2024
Accepted: June 30, 2024
Publication Date: August 3, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202506_28(6).0003  


Modeling the gasification process through machine learning (ML) involves predicting the behavior and performance of gasification systems. Support Vector Regression (SVR) is known as an effective procedure in forecasting continuous variables and is even suitable for the modeling gasification process. Employing optimization algorithms to connect and fine-tune internal model settings can lead to the creation of various hybrid and ensemble models. Generally, employing hybrid models has demonstrated enhanced performance while utilizing cost-effective modeling techniques. In this study, SVR was utilized as a machine learning method, alongside the Crystal Structure Algorithm (CryStAl) and the Population-based Vortex Search Algorithm (PVSA), to fine-tune SVR for accurately assessing CO and CO2 values. After evaluating the outcomes of the proposed models, it was observed that the SVR-PVSA hybrid model outperformed the SVR-CryStAl model, with differences of 1%, 19%, and 57% based on R², RMSE, and MAE indices, respectively for CO and that of 1%, 14%, and 54% for CO2 in terms of R², RMSE, and MAE evaluators, respectively. Furthermore, for predicting both CO and CO2, the SVR-CryStAl hybrid model yielded the highest value, demonstrating superior performance compared to the SVR-PVSA model, with an average difference of 0.6% and 0.9% in terms of the VAF index.


Keywords: Gasification modeling; Machine learning; Support Vector Regression; Crystal Structure Algorithm; Population-based Vortex Search Algorithm


  1. [1] D. A. Akinpelu, O. A. Adekoya, P. O. Oladoye, C. C. Ogbaga, and J. A. Okolie, (2023) “Machine learning applications in biomass pyrolysis: from biorefinery to endof-life product management" Digital Chemical Engineering 8: 100103. DOI: 10.1016/j.dche.2023.100103.
  2. [2] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, and P. Sareh, (2021) “Crystal structure algorithm (CryStAl): a metaheuristic optimization method" IEEE Access 9: 71244–71261. DOI: 10.1109/ACCESS.2021.3079161.
  3. [3] T. Sa˘g, (2022) “PVS: a new population-based vortex search algorithm with boosted exploration capability using polynomial mutation" Neural Computing and Applications 34: 18211–18287. DOI: 10.1007/s00521-022-07671-x.
  4. [4] A. Shafizadeh, H. Shahbeik, S. Rafiee, A. Moradi, M. Shahbaz, M. Madadi, C. Li, W. Peng, M. Tabatabaei, and M. Aghbashlo, (2023) “Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production" Fuel 347: 128467. DOI: 10.1016/j.fuel.2023.128467.
  5. [5] F. Elmaz, Ö. Yücel, and A. Y. Mutlu, (2020) “Predictive modeling of biomass gasification with machine learningbased regression methods" Energy 191: 116541. DOI: 10.1016/j.energy.2019.116541.
  6. [6] H. Ullah, S. Khan, B. Chen, A. Shahab, L. Riaz, L. Lun, and N. Wu, (2023) “Machine learning approach to predict adsorption capacity of Fe-modified biochar for selenium" Carbon Research 2: 29. DOI: 10.1007/s44246-023-00061-5.
  7. [7] M. S. Zaghloul, R. A. Hamza, O. T. Iorhemen, and J. H. Tay, (2020) “Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors" Journal of Environmental Chemical Engineering 8: 103742. DOI: 10.1016/j.jece.2020.103742.
  8. [8] M. Awad, R. Khanna, M. Awad, and R. Khanna, (2015) “Support vector regression" Efficient learning machines: Theories, concepts, and applications for engineers and system designers: 67–80. DOI: 10.1007/978-1-4302-5990-9_4.
  9. [9] J. Li, M. Suvarna, L. Pan, Y. Zhao, and X. Wang, (2021) “A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification" Applied Energy 304: 117674. DOI: 10.1016/j.apenergy.2021.117674.
  10. [10] S. Shenbagaraj, P. K. Sharma, A. K. Sharma, G. Raghav, K. B. Kota, and V. Ashokkumar, (2021) “Gasification of food waste in supercritical water: An innovative synthesis gas composition prediction model based on Artificial Neural Networks" International Journal of Hydrogen Energy 46: 12739–12757. DOI: 10.1016/j.ijhydene.2021.01.122.
  11. [11] E. E. Ozbas, D. Aksu, A. Ongen, M. A. Aydin, and H. K. Ozcan, (2019) “Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms" International Journal of Hydrogen Energy 44: 17260–17268. DOI: 10.1016/j.ijhydene.2019.02.108.
  12. [12] J. George, P. Arun, and C. Muraleedharan, (2018) “Assessment of producer gas composition in air gasification of biomass using artificial neural network model" International Journal of Hydrogen Energy 43: 9558–9568. DOI: 10.1016/j.ijhydene.2018.04.007.
  13. [13] M. Ozonoh, B. O. Oboirien, A. Higginson, and M. O. Daramola, (2020) “Performance evaluation of gasification system efficiency using artificial neural network" Renewable Energy 145: 2253–2270. DOI: 10.1016/j.renene.2019.07.136.
  14. [14] P. V. Gopirajan, K. P. Gopinath, G. Sivaranjani, and J. Arun, (2021) “Optimization of hydrothermal gasification process through machine learning approach: Experimental conditions, product yield and pollution" Journal of Cleaner Production 306: 127302. DOI: 10.1016/j.jclepro.2021.127302.
  15. [15] A. Lee, P. Taylor, J. Kalpathy-Cramer, and A. Tufail, (2017) “Machine learning has arrived!" Ophthalmology 124: 1726–1728. DOI: 10.1016/j.ophtha.2017.08.046.
  16. [16] S. L. Narnaware and N. L. Panwar, (2022) “Biomass gasification for climate change mitigation and policy framework in India: A review" Bioresource Technology Reports 17: 100892. DOI: 10.1016/j.biteb.2021.100892.
  17. [17] Z. Ceylan and S. Ceylan. Application of machine learning algorithms to predict the performance of coal gasification process. Elsevier, 2021, 165–186. DOI: 10.1016/ B978-0-12-821092-5.00003-6.
  18. [18] S. Ascher, W. Sloan, I. Watson, and S. You, (2022) “A comprehensive artificial neural network model for gasification process prediction" Applied Energy 320: 119289. DOI: 10.1016/j.apenergy.2022.119289.
  19. [19] Ö. Tezer, N. Karaba˘g, A. Öngen, C. Ö. Çolpan, and A. Ayol, (2022) “Biomass gasification for sustainable energy production: A review" International Journal of Hydrogen Energy 47: 15419–15433. DOI: 10.1016/j.ijhydene.2022.02.158.
  20. [20] Y. Xiao, S. Xu, Y. Song, Y. Shan, C. Wang, and G. Wang, (2017) “Biomass steam gasification for hydrogenrich gas production in a decoupled dual loop gasification system" Fuel Processing Technology 165: 54–61. DOI: 10.1016/j.fuproc.2017.05.013.
  21. [21] D. Singh. Advances in industrial waste management. Elsevier, 2023, 385–416. DOI: 10.1016/B978-0-323-90463-6.00027-0.
  22. [22] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, (2014) “Renewable energy resources: Current status, future prospects and their enabling technology" Renewable and sustainable energy reviews 39: 748–764. DOI: 10.1016/j.rser.2014.07.113.
  23. [23] D. Baruah, D. C. Baruah, and M. K. Hazarika, (2017) “Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers" Biomass and Bioenergy 98: 264–271. DOI: 10.1016/j.biombioe.2017.01.029.
  24. [24] V. N. Vapnik and V. N. Vapnik, (2000) “Controlling the generalization ability of learning processes" The Nature of Statistical Learning Theory: 93–122. DOI: 10.1007/ 978-1-4757-3264-1_5.
  25. [25] C. Loha, H. Chattopadhyay, and P. K. Chatterjee, (2013) “Energy generation from fluidized bed gasification of rice husk" Journal of renewable and sustainable energy 5: DOI: 10.1063/1.4816496.
  26. [26] K. G. Mansaray, A. E. Ghaly, A. M. Al-Taweel, F. Hamdullahpur, and V. I. Ugursal, (1999) “Air gasification of rice husk in a dual distributor type fluidized bed gasifier" Biomass and bioenergy 17: 315–332. DOI: 10.1016/S0961-9534(99)00046-X.
  27. [27] S. Sarker, F. Bimbela, J. L. Sánchez, and H. K. Nielsen, (2015) “Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets" Energy Conversion and Management 91: 451– 458. DOI: 10.1016/j.enconman.2014.12.034.
  28. [28] S. Sarker and H. K. Nielsen, (2015) “Assessing the gasification potential of five woodchips species by employing a lab-scale fixed-bed downdraft reactor" Energy Conversion and Management 103: 801–813. DOI: 10.1016/j.enconman.2015.07.022.
  29. [29] S. Kaewluan and S. Pipatmanomai, (2011) “Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed" Fuel Processing Technology 92: 671–677. DOI: 10.1016/j.fuproc.2010.11.026.
  30. [30] J. M. D. Andres, A. Narros, and M. E. Rodríguez, (2011) “Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst" Fuel Processing Technology 92: 433–440. DOI: 10.1016/j.fuproc.2010.10.006.
  31. [31] P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen, and J. X. Zhu, (2004) “An experimental study on biomass air–steam gasification in a fluidized bed" Bioresource technology 95: 95–101. DOI: 10.1016/j.biortech.2004.02.003.
  32. [32] P. Iovane, A. Donatelli, and A. Molino, (2013) “Influence of feeding ratio on steam gasification of palm shells in a rotary kiln pilot plant. Experimental and numerical investigations" Biomass and Bioenergy 56: 423–431. DOI: 10.1016/j.biombioe.2013.05.025.
  33. [33] Z. Zhang and S. Pang, (2017) “Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier" Fuel 188: 628–635. DOI: 10.1016/j.fuel.2016.10.074.
  34. [34] S. Fremaux, S.-M. Beheshti, H. Ghassemi, and R. Shahsavan-Markadeh, (2015) “An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed" Energy Conversion and Management 91: 427–432. DOI: 10.1016/j.enconman.2014.12.048.
  35. [35] J. Herguido, J. Corella, and J. Gonzalez-Saiz, (1992) “Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock" Industrial & engineering chemistry research 31: 1274–1282.
  36. [36] P. P. Dutta, V. Pandey, A. R. Das, S. Sen, and D. C. Baruah, (2014) “Down draft gasification modelling and experimentation of some indigenous biomass for thermal applications" Energy Procedia 54: 21–34. DOI: 10.1016/j.egypro.2014.07.246.
  37. [37] E. Biagini, F. Barontini, and L. Tognotti, (2016) “Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor" Bioresource technology 201: 156–165. DOI: 10.1016/j.biortech.2015.11.057.
  38. [38] T. Song, J. Wu, L. Shen, and J. Xiao, (2012) “Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds" Biomass and bioenergy 36: 258–267. DOI: 10.1016/j.biombioe.2011.10.021.
  39. [39] R. Yin, R. Liu, J. Wu, X. Wu, C. Sun, and C. Wu, (2012) “Influence of particle size on performance of a pilot-scale fixed-bed gasification system" Bioresource technology 119: 15–21. DOI: 10.1016/j.biortech.2012.05.085.
  40. [40] I. Narvaez, A. Orio, M. P. Aznar, and J. Corella, (1996) “Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas" Industrial & Engineering Chemistry Research 35: 2110–2120. DOI: 10.1021/ie9507540.
  41. [41] P. Lahijani and Z. A. Zainal, (2011) “Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study" Bioresource technology 102: 2068–2076. DOI: 10.1016/j.biortech.2010.09.101.
  42. [42] C. Gai and Y. Dong, (2012) “Experimental study on non-woody biomass gasification in a downdraft gasifier" International Journal of hydrogen energy 37: 4935– 4944. DOI: 10.1016/j.ijhydene.2011.12.031.
  43. [43] H. Liu, J. Hu, H. Wang, C. Wang, and J. Li, (2012) “Experimental studies of biomass gasification with air" Journal of natural gas chemistry 21: 374–380. DOI: 10.1016/S1003-9953(11)60379-4.
  44. [44] G. Ruoppolo, P. Ammendola, R. Chirone, and F. Miccio, (2012) “H2-rich syngas production by fluidized bed gasification of biomass and plastic fuel" Waste Management 32: 724–732. DOI: 10.1016/j.wasman.2011.12.004.
  45. [45] A. Erkiaga, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, (2014) “Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor" Chemical engineering journal 237: 259–267. DOI: 10.1016/j.cej.2013.10.018.
  46. [46] C. V. Huynh and S.-C. Kong, (2013) “Performance characteristics of a pilot-scale biomass gasifier using oxygenenriched air and steam" Fuel 103: 987–996. DOI: 10.1016/j.fuel.2012.09.033.
  47. [47] H. Karatas and F. Akgun, (2018) “Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres" Fuel 214: 285–292. DOI: 10.1016/j.fuel.2017.10.061.
  48. [48] J. Wang, G. Cheng, Y. You, B. Xiao, S. Liu, P. He, D. Guo, X. Guo, and G. Zhang, (2012) “Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite" international journal of hydrogen energy 37: 6503– 6510. DOI: 10.1016/j.ijhydene.2012.01.070.
  49. [49] Z. Khan, S. Yusup, M. M. Ahmad, and B. L. F. Chin, (2014) “Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification" Energy Conversion and Management 87: 1224–1230. DOI: 10.1016/j.enconman.2014.03.024.
  50. [50] S. Luo, Y. Zhou, and C. Yi, (2012) “Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor" Energy 44: 391–395. DOI: 10.1016/j. energy.2012.06.016.
  51. [51] M. Baratieri, E. Pieratti, T. Nordgreen, and M. Grigiante, (2010) “Biomass gasification with dolomite as catalyst in a small fluidized bed experimental and modelling analysis" Waste and Biomass Valorization 1: 283–291. DOI: 10.1007/s12649-010-9034-6.
  52. [52] U. Arena, L. Zaccariello, and M. L. Mastellone, (2010) “Fluidized bed gasification of waste-derived fuels" Waste Management 30: 1212–1219. DOI: 10.1016/j.wasman. 2010.01.038.
  53. [53] U. Arena and F. D. Gregorio, (2014) “Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor" Fuel 117: 528–536. DOI: 10.1016/j.fuel.2013.09.044.
  54. [54] G. S. Margarat, S. Kumar, and S. Rajan. Forecasting wind energy production using machine learning techniques. 2023. DOI: 10.1051/e3sconf/202338701007.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.