- [1] W. Gale, K. Heasley, A. Iannacchione, P. Swanson, P. Hatherly, and A. King. “Rock damage characterisation from microseismic monitoring”. In: ARMA US Rock Mechanics/Geomechanics Symposium. ARMA. 2001, ARMA–01.
- [2] S. J. Gibowicz and S. Lasocki, (2001) “Seismicity induced by mining: Ten years later" Advances in geophysics 44: 39–181. DOI: 10.1016/S0065-2687(00)80007-2.
- [3] A. Cianciara and B. Cianciara, (2006) “The meaning of seismoacoustic emission for estimation of time of mining tremors occurrence" Archives of Mining Sciences 51: 563–575.
- [4] A. Le´sniak and Z. Isakow, (2009) “Space–time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland" International Journal of Rock Mechanics and Mining Sciences 46: 918–928. DOI: 10.1016/j.ijrmms.2008.12.003.
- [5] G. Van Aswegen. “Routine seismic hazard assessment in some South African mines”. In: Proceedings of the Sixth International Symposium on Rockbursts & Seismicity in Mines, Y. Potvin and M. Hudyma (eds), Australian Centre for Geomechanics. 2005, 437–444. DOI: 10.36487/ACG_repo/574_45.
- [6] S. Lasocki. “Probabilistic analysis of seismic hazard posed by mining induced events”. In: Proc. 6th Int. Symp. on Rockburst in Mines “Controlling Seismic Risk”. ACG, Perth. 2005, 151–156. DOI: 10.36487/ACG_repo/ 574_11.
- [7] J. Kornowski, (2003) “Linear prediction of aggregated seismic and seismoacoustic energy emitted from a mining longwall" Acta Montana 22: 5–14.
- [8] R. D. Lama and J. Bodziony, (1998) “Management of outburst in underground coal mines" International Journal of Coal Geology 35: 83–115. DOI: 10.1016/S0166-5162(97)00037-2.
- [9] M. Sari, H. S. B. Duzgun, C. Karpuz, and A. S. Selçuk, (2004) “Accident analysis of two Turkish underground coal mines" Safety Science 42: 675–690. DOI: 10.1016/j.ssci.2003.11.002.
- [10] H. S. B. Duzgun and H. H. Einstein, (2004) “Assessment and management of roof fall risks in underground coal mines" Safety Science 42: 23–41. DOI: 10.1016/S0925-7535(02)00067-X.
- [11] H. S. B. Düzgün, (2005) “Analysis of roof fall hazards and risk assessment for Zonguldak coal basin underground mines" International Journal of Coal Geology 64: 104–115. DOI: 10.1016/j.coal.2005.03.008.
- [12] R. L. Grayson, H. Kinilakodi, and V. Kecojevic, (2009) “Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data" Safety science 47: 1371–1378. DOI: 10.1016/j.ssci.2009.03.004.
- [13] J. Maiti and V. V. Khanzode, (2009) “Development of a relative risk model for roof and side fall fatal accidents in underground coal mines in India" Safety science 47: 1068–1076. DOI: 10.1016/j.ssci.2008.12.003.
- [14] P. S. Paul, (2009) “Predictors of work injury in underground mines—an application of a logistic regression model" Mining Science and Technology (China) 19: 282–289. DOI: 10.1016/S1674-5264(09)60053-3.
- [15] K. Shahriar and E. Bakhtavar, (2009) “Geotechnical risks in underground coal mines" Journal of Applied Sciences 9: 2137–2143. DOI: 10.3923/jas.2009.2137.2143.
- [16] V. V. Khanzode, J. Maiti, and P. K. Ray, (2011) “A methodology for evaluation and monitoring of recurring hazards in underground coal mining" Safety Science 49: 1172–1179. DOI: 10.1016/j.ssci.2011.03.009.
- [17] A. Nieto, Y. Gao, L. Grayson, and G. Fu, (2014) “A comparative study of coal mine safety performance indicators in China and the USA" International Journal of Mining and Mineral Engineering 5: 299–314. DOI: 10.1504/IJMME.2014.066578.
- [18] Q. Liu, X. Li, and X. Meng, (2019) “Effectiveness research on the multi-player evolutionary game of coal-mine safety regulation in China based on system dynamics" Safety science 111: 224–233. DOI: 10.1016/j.ssci.2018.07.014.
- [19] Q. Liu, X. Li, and X. Meng, (2019) “Effectiveness research on the multi-player evolutionary game of coal-mine safety regulation in China based on system dynamics" Safety science 111: 224–233. DOI: 10.1016/j.ssci.2018.07.014.
- [20] S. Mahdevari, K. Shahriar, and A. Esfahanipour, (2014) “Human health and safety risks management in underground coal mines using fuzzy TOPSIS" Science of the Total Environment 488: 85–99. DOI: 10.1016/j.scitotenv.2014.04.076.
- [21] A. Nieto, Y. Gao, L. Grayson, and G. Fu, (2014) “A comparative study of coal mine safety performance indicators in China and the USA" International Journal of Mining and Mineral Engineering 5: 299–314. DOI: 10.1504/IJMME.2014.066578.
- [22] Q. Liu, X. Li, and M. Hassall, (2015) “Evolutionary game analysis and stability control scenarios of coal mine safety inspection system in China based on system dynamics" Safety science 80: 13–22. DOI: 10.1016/j.ssci.2015.07.005.
- [23] S. Mahdevari, K. Shahriar, and A. Esfahanipour, (2014) “Human health and safety risks management in underground coal mines using fuzzy TOPSIS" Science of the Total Environment 488: 85–99. DOI: 10.1016/j.scitotenv.2014.04.076.
- [24] Q. Liu, X. Li, and M. Hassall, (2015) “Evolutionary game analysis and stability control scenarios of coal mine safety inspection system in China based on system dynamics" Safety science 80: 13–22. DOI: 10.1016/j.ssci.2015.07.005.
- [25] V. Rudajev and R. Ciž, (1999) ˇ “Estimation of mining tremor occurrence by using neural networks" Pure and applied geophysics 154: 57–72. DOI: 10.1007/s000240050221.
- [26] J. Kabiesz, (2006) “Effect of the form of data on the quality of mine tremors hazard forecasting using neural networks" Geotechnical Geological Engineering 24: 1131–1147. DOI: 10.1007/s10706-005-1136-8.
- [27] B. Bodri, (2001) “A neural-network model for earthquake occurrence" Journal of Geodynamics 32: 289–310. DOI: 10.1016/S0264-3707(01)00039-4.
- [28] I. U. Sikder and T. Munakata, (2009) “Application of rough set and decision tree for characterization of premonitory factors of low seismic activity" Expert Systems with Applications 36: 102–110. DOI: 10.1016/j.eswa.2007.09.032.
- [29] C. Liu, M. White, and G. Newell. “Measuring the accuracy of species distribution models: a review”. In: Proceedings 18th World IMACs/MODSIM Congress. Cairns, Australia. 4241. 2009, 4247.
- [30] S. K. Ghosh and F. Janan. “Prediction of student’s performance using random forest classifier”. In: Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore. 2021, 7–11.
- [31] L. Breiman, (2001) “Random forests" Machine learning 45: 5–32. DOI: 10.1023/A:1010933404324.
- [32] V. Vapnik, (1998) “Statistical Learning Theory. New York: John Willey Sons" Inc:
- [33] S. Maldonado, J. Pérez, R. Weber, and M. Labbé, (2014) “Feature selection for support vector machines via mixed integer linear programming" Information sciences 279: 163–175. DOI: 10.1016/j.ins.2014.03.110.
- [34] C.-C. Chang and C.-J. Lin, (2011) “LIBSVM: a library for support vector machines" ACM transactions on intelligent systems and technology (TIST) 2: 1–27. DOI: 10.1145/1961189.1961199.
- [35] J. Wang, Y. Li, G. Hu, and M. Yang, (2022) “An enhanced artificial hummingbird algorithm and its application in truss topology engineering optimization" Advanced Engineering Informatics 54: 101761. DOI: 10.1016/j.aei.2022.101761.
- [36] W. Zhao, L. Wang, and S. Mirjalili, (2022) “Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications" Computer Methods in Applied Mechanics and Engineering 388: 114194. DOI: 10.1016/j.cma.2021.114194.
- [37] A. Ramadan, S. Kamel, M. H. Hassan, E. M. Ahmed, and H. M. Hasanien, (2022) “Accurate photovoltaic models based on an adaptive opposition artificial hummingbird algorithm" Electronics 11: 318. DOI: 10.3390/electronics11030318.
- [38] M. S. Abid, H. J. Apon, K. A. Morshed, and A. Ahmed, (2022) “Optimal planning of multiple renewable energy-integrated distribution system with uncertainties using artificial hummingbird algorithm" IEEE Access 10: 40716–40730. DOI: 10.1109/ACCESS.2022.3167395.
- [39] W. Zhao, Z. Zhang, S. Mirjalili, L. Wang, N. Khodadadi, and S. M. Mirjalili, (2022) “An effective multiobjective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems" Computer Methods in Applied Mechanics and Engineering 398: 115223. DOI: 10.1016/j.cma.2022.115223.
- [40] A. Fathy, (2022) “A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems" Applied Energy 323: 119605. DOI: 10.1016/j.apenergy. 2022.119605.