Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Cuc Thi Kim Nguyen1This email address is being protected from spambots. You need JavaScript enabled to view it., Tieu Thanh Le2, and La Thi Ngoc Anh2This email address is being protected from spambots. You need JavaScript enabled to view it.

1Precision Engineering & Smart measurements Lab, Hanoi University of Science and Technology, Hanoi 100000, Vietnam

2School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam


 

 

Received: September 16, 2024
Accepted: December 17, 2024
Publication Date: March 16, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202511_28(11).0013  


Data derived from measurements of human hands are widely utilized across various fields, including virtual reality, medical science, fashion, and the development of hand size systems. The precision of hand size determination critically depends on the accurate extraction of measurement landmarks. This study emphasizes the importance of identifying primary dimensions that influence hand size systems and contributes to the development of a comprehensive hand-size database. We propose a method for measuring 24 distinct hand size parameters using 2D techniques. Our approach leverages the MediaPipe tool for accurate and automatic extraction of hand landmarks, regardless of skin color, alongside automatic hand border detection. The system was calibrated using Level 1-gauge blocks, achieving a relative error of 1.15%. Data were collected from over 500 workers, analyzing both right- and left-hand measurements for eight different male hand sizes, achieving a service rate of 70.3% in this study. This research provides a valuable tool for developing a worker hand size system, facilitating the manufacture of safety gloves and hand tools by offering an automated dataset for hand sizes.


Keywords: Hand measurement; Media Pipe hand; Binary classification; Hand sizes system


  1. [1] W. Chen, C. Yu, C. Tu, Z. Lyu, J. Tang, S. Ou, Y. Fu, and Z. Xue, (2020) “A survey on hand pose estimation with wearable sensors and computer-vision-based meth ods" Sensors 20(4): 1074. DOI: 10.3390/s20041074.
  2. [2] A.Ballester, E. Parrilla, A. Piérola, J. Uriel, C. Pérez, P. Piqueras, B. Nácher, J. A. Vivas, and S. Alemany, (2016) “Data-driven three-dimensional reconstruction of human bodies using a mobile phone app" International Journal of the Digital Human 1(4): 361–388. DOI: 10.1504/IJDH.2016.084581.
  3. [3] C.N.T. Kim, T. T. Vu, and B. X. Cao, (2024) “Accurate 3D reconstruction of highly reflective mechanical part surfaces using a structured light method with combined phase shift and gray code" Results in Engineering 23: 102583. DOI: 10.1016/j.rineng.2024.102583.
  4. [4] A. Kumar, D. C. Wong, H. C. Shen, and A. K. Jain, (2006) “Personal authentication using hand images" Pat tern Recognition Letters 27(13): 1478–1486. DOI: 10.1016/j.patrec.2006.02.021.
  5. [5] V. K. Phan, V. T. Dung, T. Van Doanh, and N. T. K. Cuc. “Apply Image Processing Techniques into the Process of Reading and Calibrating Levelling Staffs”. In: Regional Conference in Mechanical Manufacturing Engineering. Springer. 2021, 437–446. DOI: 10.1007/978-981-19-1968-8_35.
  6. [6] N.N.Kaashki,P.Hu,andA.Munteanu,(2021)“Anet: Adeep neural network for automatic 3d anthropometric measurement extraction" IEEE Transactions on Multi media 25: 831–844. DOI: 10.1109/TMM.2021.3132487.
  7. [7] S. Gattupalli, A. R. Babu, J. R. Brady, F. Makedon, and V. Athitsos. “Towards deep learning based hand keypoints detection for rapid sequential movements from rgb images”. In: Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Confer ence. 2018, 31–37. DOI: 10.1145/3197768.3201538.
  8. [8] F. Yu, L. Zeng, D. Pan, X. Sui, and J. Tang, (2020) “Evaluating the accuracy of hand models obtained from two 3D scanning techniques" Scientific Reports 10(1): 11875. DOI: 10.1038/s41598-020-68457-6.
  9. [9] A.DERAEVE,J.COOLS,andH.BOSSAER.Theuse of 3D anthropometric data for morphotype analysis to improve fit and grading techniques. 2015. DOI: 10.15221/11.052.
  10. [10] A. Yu, K. L. Yick, S. Ng, and J. Yip, (2013) “2D and 3D anatomical analyses of hand dimensions for custom madegloves" Appliedergonomics44(3):381–392. DOI: 10.1016/j.apergo.2012.10.001.
  11. [11] A. Paoli, P. Neri, A. V. Razionale, F. Tamburrino, and S. Barone, (2020) “Sensor architectures and technolo gies for upper limb 3D surface reconstruction: a review" Sensors 20(22): 6584. DOI: 10.3390/s20226584.
  12. [12] A. Yu, K. Yick, S. Ng, and J. Yip, (2019) “Case study on the effects of fit and material of sports gloves on hand performance" Applied Ergonomics 75: 17–26. DOI: 10.1016/j.apergo.2018.09.007.
  13. [13] H. Hsiao, J. Whitestone, T.-Y. Kau, and B. Hildreth, (2015) “Firefighter hand anthropometry and structural glove sizing: a new perspective" Human factors 57(8): 1359–1377. DOI: 10.1177/0018720815594933.
  14. [14] M.Vergara, M.-J. Agost, and V. Bayarri, (2019) “An thropometric characterisation of palm and finger shapes to complement current glove-sizing systems" International Journal of Industrial Ergonomics 74: 102836. DOI: 10.1016/j.ergon.2019.102836.
  15. [15] N.N.Kaashki, X. Dai, T. Gyarmathy, P. Hu, B. Iancu, and A. Munteanu. “Automatic and fast extraction of 3d hand measurements using a deep neural net work”. In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE. 2022, 1–6. DOI: 10.1109/I2MTC48687.2022.9806686.
  16. [16] A. Altaboli, H. Shamata, M. Hamed, W. Ali, H. Al shalbi, and A. Bukhatwa,(2022) “HandAnthropometry of a Sample of Libyan Young Adults from the City of Beng hazi" reason 11(16): 31.
  17. [17] T. Pham, P. N. Pathirana, H. Trinh, and P. Fay, (2015) “A non-contact measurement system for the range of mo tion of the hand" Sensors 15(8): 18315–18333. DOI: 10.3390/s150818315.
  18. [18] Q. Chen, Q.-s. Sun, P. A. Heng, and D.-s. Xia, (2008) “A double-threshold image binarization method based on edge detector" Pattern recognition 41(4): 1254–1267. DOI: 10.1016/j.patcog.2007.09.007.
  19. [19] A. Zenner and A. Krüger. “Estimating detection thresholds for desktop-scale hand redirection in vir tual reality”. In: 2019 IEEE Conference on Virtual Re ality and 3D User Interfaces (VR). IEEE. 2019, 47–55. DOI: 10.1109/VR.2019.8798143.
  20. [20] T. Grzejszczak, M. Kawulok, and A. Galuszka, (2016) “Hand landmarks detection and localization in color im ages" Multimedia Tools and Applications 75: 16363 16387. DOI: 10.1007/s11042-015-2934-5.
  21. [21] H. S. Han and C. K. Park, (2016) “Automatic hand measurement system from 2D hand image for customized glove production" Fashion & Textile Research Journal 18(4): 468–476. DOI: 10.5805/SFTI.2016.18.4.468.
  22. [22] F. E. Sandnes. “A two-stage binarizing algorithm for automatic 2D: 4D finger ratio measurement of hands with non-separated fingers”. In: 2015 11th In ternational Conference on Innovations in Information Technology (IIT). IEEE. 2015, 178–183. DOI: 10.1109/INNOVATIONS.2015.7381536.
  23. [23] S. Singh, N. Mittal, H. Singh, and D. Oliva, (2023) “Improving the segmentation of digital images by using a modified Otsu’s between-class variance" Multimedia Tools and Applications 82(26): 40701–40743. DOI: 10.1007/s11042-023-15129-y.
  24. [24] Z. Xie, J. Wu, W. Tang, and Y. Liu, (2024) “Advancing image segmentation with DBO-Otsu: Addressing rubber tree diseases through enhanced threshold techniques" Plos one 19(3): e0297284. DOI: 10.1371/journal.pone.0297284.
  25. [25] C.Huang, X. Li, and Y. Wen, (2021) “AN OTSU image segmentation based on fruitfly optimization algorithm" Alexandria Engineering Journal 60(1): 183–188. DOI: 10.1016/j.aej.2020.06.054.
  26. [26] Z. Peng, L. Wang, L. Tong, H. Zou, D. Liu, and C. Zhang, (2023) “Multi-threshold image segmentation of 2D OTSUinland ships based on improved genetic algo rithm" Plos one 18(8): e0290750. DOI: 10.1371/journal.pone.0290750.
  27. [27] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L. Chang, and M. Grundmann, (2020) “Mediapipe hands: On-device real-time hand tracking" arXiv preprint arXiv:2006.10214: DOI: 10.48550/arXiv.2006.10214.
  28. [28] F. Gu, J. Fan, Z. Wang, X. Liu, J. Yang, and Q. Zhu, (2023) “Automatic range of motion measurement via smartphone images for telemedicine examination of the hand" Science Progress 106(1): 00368504231152740. DOI: 10.1177/00368504231152740.
  29. [29] F. Gu, J. Fan, C. Cai, Z. Wang, X. Liu, J. Yang, and Q. Zhu, (2022) “Automatic detection of abnormal hand ges tures in patients with radial, ulnar, or median nerve injury using hand pose estimation" Frontiers in Neurology 13: 1052505. DOI: 10.3389/fneur.2022.1052505.
  30. [30] J. Szkudlarek, B. Zagrodny, S. Zarychta, and X. Zhao, (2023) “3D Hand Scanning Methodology for Determin ing Protective Glove Dimensional Allowances" Interna tional Journal of Environmental Research and Pub lic Health 20(3): 2645. DOI: 10.3390/ijerph20032645.
  31. [31] K. Pearson, (1893) “Contributions to the mathematical theory of evolution." Proceedings of the Royal Society of London 54: 329–333.
  32. [32] P. J. Taylor and M. Shoben. “Grading for the Fashion Industry: The Theory and Practice”. In: 2004.
  33. [33] F. J. Masley, S. Lee, and A. Atkinson-Skinner. “Hand sizing tool”. US8176647B2. Filed October 8, 2010; is sued May 15, 2012. 15, 2012.
  34. [34] L. T. N. Anh, N. T. K. Cuc, P. T. Hien, T. T. Nga, T. VanDoanh,andT.M.Hieu.“ResearchontheCharac teristics of the Length, Breadth, and Diagonal Hand Dimensions of Male Students by Indirect Measure ment Method”. In: Advances in Asian Mechanism and Machine Science: Proceedings of IFToMM Asian MMS 2021 6. Springer. 2022, 638–648. DOI: 10.1007/978-3 030-91892-7_61.
  35. [35] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. “Hand keypoint detection in single images using multiview bootstrapping”. In: Proceedings of the IEEE conference on ComputerVisionandPattern Recognition. 2017, 1145 1153. DOI: 10.48550/arXiv.1704.07809.
  36. [36] A. Yu, K.-l. Yick, and S.-t. Wong, (2021) “Analysis of length of finger segments with different hand postures to enhance glove design" Applied Ergonomics 94: 103409. DOI: 10.1016/j.apergo.2021.103409.
  37. [37] N.D.Tien,N.T.K.Cuc,H.V.Van,et al. “A Design of Synergic Humanoid Robot Hand Using Finger Lock and Sensors to Achieve Adaptive Grasps”. In: 2024 IEEE 11th International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC). IEEE. 2024, 000387–000392. DOI: 10.1109/ICCC62278.2024.10582967.


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.