- [1] M.Sajjad, F. U. M. Ullah, M. Ullah, G. Christodoulou, F. A. Cheikh, M. Hijji, K. Muhammad, and J. J. Ro drigues, (2023) “A comprehensive survey on deep facial expression recognition: challenges, applications, and fu ture guidelines" Alexandria Engineering Journal 68: 817–840. DOI: 10.1016/j.aej.2023.01.017.
- [2] J. Yu, H. Li, S.-L. Yin, and S. Karim, (2020) “Dynamic gesture recognition based on deep learning in human-to computer interfaces" Journal of Applied Science and Engineering 23(1): 31–38. DOI: 10.6180/jase.202003_ 23(1).0004.
- [3] M.Gantchoff, D. Beyer Jr, J. Erb, D. MacFarland, D. Norton, B. Roell, J. Price Tack, and J. Belant, (2022) “Distribution model transferability for a wide-ranging species, the Gray Wolf" Scientific Reports 12(1): 13556. DOI: 10.1038/s41598-022-16121-6.
- [4] S. Yin and H. Li, (2020) “Hot region selection based on selective search and modified fuzzy C-means in remote sensing images" IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13: 5862–5871. DOI: 10.1109/JSTARS.2020.3025582.
- [5] M.RaiandP. Rivas. “A review of convolutional neu ral networks and gabor filters in object recognition”. In: 2020 International Conference on Computational Sci ence and Computational Intelligence (CSCI). IEEE. 2020, 1560–1567. DOI: 10.1109/CSCI51800.2020.00289.
- [6] J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, (2020) “A review of convolutional neural network applied to fruit image processing" Applied Sciences 10(10): 3443. DOI: 10.3390/app10103443.
- [7] L. Wang, Y. Shoulin, H. Alyami, A. A. Laghari, M. Rashid, J. Almotiri, H. J. Alyamani, and F. Alturise. Anovel deep learning-based single shot multibox detector model for object detection in optical remote sensing images. 2024. DOI: 10.1002/gdj3.162.
- [8] H.Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen, (2021) “Convolutional neural networks for medi cal image analysis: state-of-the-art, comparisons, improve ment and perspectives" Neurocomputing 444: 92–110. DOI: 10.1016/j.neucom.2020.04.157.
- [9] P. K. Srivastava, G. Singh, S. Kumar, N. K. Jain, and V. Bali, (2024) “Gabor filter and centre symmetric-local binary pattern based technique for forgery detection in images" Multimedia Tools and Applications 83(17): 50157–50195. DOI: 10.1007/s11042-023-17485-1.
- [10] Y. Zhang, W. Chan, and N. Jaitly. “Very deep con volutional networks for end-to-end speech recogni tion”. In: 2017 IEEE international conference on acous tics, speech and signal processing (ICASSP). IEEE. 2017, 4845–4849. DOI: 10.1109/ICASSP.2017.7953077.
- [11] S. Yin, H. Li, A. A. Laghari, T. R. Gadekallu, G. A. Sampedro, and A. Almadhor, (2024) “An Anomaly Detection Model Based on Deep Auto-Encoder and Cap sule Graph Convolution via Sparrow Search Algorithm in 6G Internet of Everything" IEEE Internet of Things Journal 11(18): 29402–29411. DOI: 10.1109/JIOT.2024.3353337.
- [12] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu. “Ghostnet: More features from cheap operations”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, 1580–1589. DOI: 10.1109/CVPR42600.2020.00165.
- [13] L. Zhang, N. Zhang, R. Shi, G. Wang, Y. Xu, and Z. Chen, (2023) “Sg-det: Shuffle-ghostnet-based detector for real-time maritime object detection in uav images" Re mote Sensing 15(13): 3365. DOI: 10.3390/rs15133365.
- [14] S. Zhang, C. Qu, C. Ru, X. Wang, and Z. Li, (2023) “Multi-objects recognition and self-explosion defect detec tion method for insulators based on lightweight GhostNet YOLOV4model deployed onboard UAV" IEEE Access 11: 39713–39725. DOI: 10.1109/ACCESS.2023.3268708.
- [15] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang. “Residual attention network for image classification”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 3156–3164. DOI: 10.1109/CVPR.2017.683.
- [16] K. Dong, C. Zhou, Y. Ruan, and Y. Li. “MobileNetV2 model for image classification”. In: 2020 2nd Interna tional Conference on Information Technology and Com puter Application (ITCA). IEEE. 2020, 476–480. DOI: 10.1109/ITCA52113.2020.00106.
- [17] L. Teng and Y. Qiao, (2022) “BiSeNet-oriented context attention model for image semantic segmentation" Com puter Science and Information Systems 19(3): 1409 1426. DOI: 10.2298/CSIS220321040T.
- [18] B. Singh, S. Patel, A. Vijayvargiya, and R. Kumar, (2023) “Analyzing the impact of activation functions on the performance of the data-driven gait model" Results in Engineering 18: 101029. DOI: 10.1016/j.rineng. 2023.101029.
- [19] Z. Lv. “Facial expression recognition method based on dual-branch fusion network with noisy labels”. In: 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 7. IEEE. 2024, 1608–1612. DOI: 10.1109/IAEAC59436. 2024.10504071.
- [20] A. Greco, N. Strisciuglio, M. Vento, and V. Vigilante, (2023) “Benchmarking deep networks for facial emotion recognition in the wild" Multimedia tools and appli cations 82(8): 11189–11220. DOI: 10.1007/s11042-022 12790-7.
- [21] D. Chen, G. Wen, H. Li, R. Chen, and C. Li, (2023) “Multi-relations aware network for in-the-wild facial ex pression recognition" IEEE Transactions on Circuits and Systems for Video Technology 33(8): 3848–3859. DOI: 10.1109/TCSVT.2023.3234312.
- [22] A.A.Alhussan,F.M.Talaat,E.-S.M.El-kenawy,A.A. Abdelhamid, A. Ibrahim, D. S. Khafaga, and M. Al naggar, (2023) “Facial Expression Recognition Model De pending on Optimized Support Vector Machine." Com puters, Materials & Continua 76(1): DOI: 10.32604/cmc.2023.039368.
- [23] R. Singh, S. Saurav, T. Kumar, R. Saini, A. Vohra, and S. Singh, (2023) “Facial expression recognition in videos using hybrid CNN & ConvLSTM" International Journal of Information Technology 15(4): 1819–1830. DOI: 10.1007/s41870-023-01183-0.
- [24] Y. Wu, L. Zhang, Z. Gu, H. Lu, and S. Wan, (2023) “Edge-AI-driven framework with efficient mobile network design for facial expression recognition" ACM Transac tions on Embedded Computing Systems 22(3): 1–17. DOI: 10.1145/3587038.
- [25] G. Kou, D. Pamucar, H. Dinçer, and S. Yüksel, (2023) “From risks to rewards: A comprehensive guide to sustain able investment decisions in renewable energy using a hybrid facial expression-based fuzzy decision-making ap proach" Applied Soft Computing 142: 110365. DOI: 10.1016/j.asoc.2023.110365.
- [26] S. Hossain, S. Umer, R. K. Rout, and M. Tanveer, (2023) “Fine-grained image analysis for facial expression recognition using deep convolutional neural networks with bilinear pooling" Applied Soft Computing 134: 109997. DOI: 10.1016/j.asoc.2023.109997.
- [27] X. Chen, X. Zheng, K. Sun, W. Liu, and Y. Zhang, (2023) “Self-supervised vision transformer-based few-shot learning for facial expression recognition" Information Sciences 634: 206–226. DOI: 10.1016/j.ins.2023.03.105.
- [28] R. Febrian, B. M. Halim, M. Christina, D. Ramdhan, and A. Chowanda, (2023) “Facial expression recogni tion using bidirectional LSTM-CNN" Procedia Com puter Science 216: 39–47. DOI: 10.1016/j.procs.2022.12.109.
- [29] N.KumarHN,A.S.Kumar,G.PrasadMS,andM.A. Shah, (2023) “Automatic facial expression recognition combining texture and shape features from prominent facial regions" IET Image Processing 17(4): 1111–1125. DOI: 10.1049/ipr2.12700.
- [30] C. Liu, K. Hirota, and Y. Dai, (2023) “Patch atten tion convolutional vision transformer for facial expression recognition with occlusion" Information Sciences 619: 781–794. DOI: 10.1016/j.ins.2022.11.068.