Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Prashant Shivajirao Mali1,2This email address is being protected from spambots. You need JavaScript enabled to view it. and D. Susitra1

1Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India

2Department of Electrical Engineering, Annasaheb Dange College of Engineering and Technology, Ashta, India


 

 

Received: July 5, 2024
Accepted: January 21, 2025
Publication Date: March 16, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202511_28(11).0015  


The growing adoption of electric vehicles (EVs) necessitates advancements in motor performance to overcome range limitations caused by the lower energy density of batteries compared to fossil fuels. This study aims to conduct a comparative analysis of electric motors for EV applications, focusing on Permanent Magnet Synchronous Motors (PMSMs). Techniques like Non-Destructive Testing (NDT) with magnetic flux density mapping and Direct Torque Control (DTC) were employed to enhance dynamic response. The study also explored model predictive control (MPC) to optimize efficiency and reduce energy losses. Results revealed that the "Speed Master Elite" motor achieved an outstanding 92% efficiency, showcasing its potential for superior power output. Future work includes developing smart charging infrastructure to optimize EV charging based on grid and energy availability, further enhancing EV performance and sustainability.


Keywords: Electric Vehicle; Non-destructive Testing; Direct Torque Control; Permanent Magnet Synchronous Motor; Model Predictive Control; Electrical Motors


  1. [1] A. Pamidimukkala, S. Kermanshachi, J. M. Rosen berger, and G. Hladik, (2024) “Barriers and motiva tors to the adoption of electric vehicles: A global review" Green Energy and Intelligent Transportation 3(2): 100153. DOI: 10.1016/j.geits.2024.100153.
  2. [2] A.Benmouna, L. Borderiou, and M. Becherif, (2024) “Charging stations for large-scale deployment of elec tric vehicles" Batteries 10(1): 33. DOI: 10.339/batteries10010033.
  3. [3] B. Azzopardi and Y. Gabdullin, (2024) “Impacts of electric vehicles charging in low-voltage distribution net-works: a case study in Malta" Energies 17(2): 289. DOI: 10.3390/en17020289.
  4. [4] N.Afsari, S. SeyedShenava, and H. Shayeghi, (2024) “Amilp model incorporated with the risk management tool for self-healing oriented service restoration" Journal of Operation and Automation in Power Engineering 12(1): 1–13.
  5. [5] P. Chakraborty, M. Pal, et al., (2024) “Planning of fast charging infrastructure for electric vehicles in a distri bution system and prediction of dynamic price" Interna tional Journal ofElectrical Power&EnergySystems 155: 109502. DOI: 10.1016/j.ijepes.2023.109502.
  6. [6] S. Habibi, R. Effatnejad, M. Hedayati, and P. Haji hosseini, (2024) “Stochastic energy management of a microgrid incorporating two-point estimation method, mobile storage, and fuzzy multi-objective enhanced grey wolf optimizer" Scientific Reports 14(1): 1667. DOI: 10.1038/s41598-024-51166-9.
  7. [7] S.S.A.Naqvi,H.Jamil,N.Iqbal,S.Khan,M.A.Khan, F. Qayyum, and D.-H. Kim, (2024) “Evolving electric mobility energy efficiency: In-depth analysis of integrated electronic control unit development in electric vehicles" IEEE Access 12: 15957–15983. DOI: 10.1109/ACCESS.2024.3356598.
  8. [8] P. Muthukumar, M. Venkateshkumar, and C. S. Chin, (2024) “A comparative study of cutting-edge bi-directional power converters and intelligent control methodologies for Advanced Electric Mobility" IEEE Ac cess 12: 28710–28752. DOI: 10.1109/ACCESS.2024.3360267.
  9. [9] M.G.Abdel-Moneim,W.E.Abdel-Azim,A.S.Abdel Khalik, M. S. Hamed, and S. Ahmed, (2024) “Model predictive current control of nine-switch inverter-fed six phase induction motor drives under healthy and fault scenarios" IEEE Transactions on Transportation Elec trification: DOI: 10.1109/TTE.2024.3368791.
  10. [10] M.N.Tasnim, J. M. K. Riana, T. Shams, M. Shahjalal, N.Subhani,M.R.Ahmed,andA.Iqbal,(2024)“Acrit ical review on contemporary power electronics interface topologies to vehicle-to-grid technology: Prospects, chal lenges, and directions" IET Power Electronics 17(1): 157–181. DOI: 10.1049/pel2.12618.
  11. [11] S. Tadi´c, M. Krsti´c, and L. Radovanovi´c, (2024) “As sessing strategies to overcome barriers for drone usage in last-mile logistics: A novel hybrid fuzzy MCDM model" Mathematics 12(3): 367. DOI: 10.3390/math12030367.
  12. [12] N. Aletras, S. Doulgeris, Z. Samaras, and L. Ntzi achristos, (2023) “Comparative Assessment of Supervi sory Control Algorithms for a Plug-In Hybrid Electric Ve hicle" Energies 16(3): 1497. DOI: 10.3390/en16031497.
  13. [13] D.Rimpas,S.D.Kaminaris,D.D.Piromalis,G.Vokas, K. G. Arvanitis, and C.-S. Karavas, (2023) “Compar ative review of motor technologies for electric vehicles powered by a hybrid energy storage system based on multi criteria analysis" Energies 16(6): 2555. DOI: 10.3390/en16062555.
  14. [14] R. Pedicini, M. Romagnoli, and P. E. Santangelo, (2023) “A Critical review of polymer electrolyte membrane fuel cell systems for automotive applications: Components, materials, and comparative assessment" Energies 16(7): 3111. DOI: 10.3390/en16073111.
  15. [15] M. H. Zafar, M. Mansoor, M. Abou Houran, N. M. Khan, K. Khan, S. K. R. Moosavi, and F. Sanfilippo, (2023) “Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles" Energy 282: 128317. DOI: 10.1016/j.energy.2023.128317.
  16. [16] H. E. Ghadbane, S. Barkat, A. Djerioui, A. Houari, M. Oproescu, and N. Bizon, (2024) “Energy manage ment of electric vehicle using a new strategy based on slap swarm optimization and differential flatness control" Scientific reports 14(1): 3629. DOI: 10.1038/s41598 024-53396-3.
  17. [17] Z. Zhang, S. Dong, D. Li, P. Liu, and Z. Wang, (2024) “Prediction and Diagnosis of Electric Vehicle Battery Fault Based on Abnormal Voltage: Using Decision Tree Algo rithm Theories and Isolated Forest" Processes 12(1): 136. DOI: 10.3390/pr12010136.
  18. [18] A. Castellano, P. Stano, U. Montanaro, M. Cammal leri, and A. Sorniotti, (2024) “Model predictive con trol for multimode power-split hybrid electric vehicles: Parametric internal model with integrated mode switch and variable meshing losses" Mechanism and Machine Theory 192: 105543. DOI: 10.1016/j.mechmachtheory.2023.105543.
  19. [19] P. Dey, S. Myint, P. Kirawanich, A. Saha, and C. Sumpavakup, (2024) “Fine tuning of on-board traction converters for high-speed electric multiple units at depot" IEEE Access: DOI: 10.1109/ACCESS.2024.3362242.
  20. [20] T. Liu, X. Yao, and J. Kou, (2024) “Enhanced model predictive control for induction motor drives in marine electric power propulsion system" Journal of Marine Science and Engineering 12(3): 378. DOI: 10.3390/jmse12030378.
  21. [21] L. Hou, Y. Guo, X. Ba, G. Lei, and J. Zhu, (2024) “Effi ciency Improvement of Permanent Magnet Synchronous Motors Using Model Predictive Control Considering Core Loss" Energies 17(4): 773. DOI: 10.3390/en17040773.
  22. [22] X. An, Z. Liu, Q. Chen, and G. Liu, (2024) “Ro bust virtual-vector model predictive control of permanent magnet motor considering D-Q axis inductance parameter uncertainty" IET Electric Power Applications 18(1): 76–89. DOI: 10.1049/elp2.12368.
  23. [23] R. Subbulakshmy, R. Palanisamy, S. Alshahrani, and C. A.Saleel, (2024) “Implementation of non-isolated high gain interleaved DC-DC converter for fuel cell electric vehicle using ann-based mppt controller" Sustainability 16(3): 1335. DOI: 10.3390/su16031335.
  24. [24] K. Khan, I. Samuilik, and A. Ali, (2024) “A mathe matical model for dynamic electric vehicles: Analysis and optimization" Mathematics 12(2): 224. DOI: 10.3390/math12020224.
  25. [25] B. A. Kumar, B. Jyothi, A. R. Singh, M. Bajaj, R. S. Rathore, and M. Berhanu, (2024) “A novel strategy to wards efficient and reliable electric vehicle charging for the realisation of a true sustainable transportation landscape" Scientific Reports 14(1): 3261. DOI: 10.1038/s41598 024-53214-w.
  26. [26] P. Kaur, (2016) “State Of Art of Smart Vehicle Man agement System Based On Pic Microcontroller and Ac celerometer" Journal of Electrical Engineering 16(2): 10–10.
  27. [27] G.Mishra, N. Mohanty, and B. Behera, (2022) “Analy sis of dielectric and electrical transport properties of Nd FeAsO ceramic" Cerâmica 68: 181–187. DOI: 10.1590/0366-69132022683863168.
  28. [28] P. Kaur, (2024) “Battery ageing management using war optimisation in electric vehicle applications" International Journal of System of Systems Engineering 14(1): 42–61. DOI: 10.1504/IJSSE.2024.135913.


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.