Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Baoge Zhang, Yongquan RenThis email address is being protected from spambots. You need JavaScript enabled to view it., Hao Tian, Xiong Lv, and Fuhong Cui

School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou,730070, China


 

Received: July 7, 2023
Accepted: November 12, 2023
Publication Date: December 11, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202409_27(9).0009  


Aiming at the problems such as small boost gain, large start-up shock, low DC side voltage utilisation, high current-voltage harmonic distortion rate, etc. of the conventional Z-source inverter (ZSI), which can not be well applied in new energy generation situations, the Zimpedance source network is improved. A Z-source inverter with high gain improved switched inductance (HISL-ZSI) topology is proposed. The HISL-ZSI topology is based on the switched-inductor Z-source inverter (SL-ZSI) with an inductor and active switch behind its DC source to form a BOOST circuit with the front stage, further improving the boost capability. A high boost unit is formed with a modified switching inductor module in the back stage, and the capacitive voltage stress on the device is reduced under the same conditions. Furthermore, the addition of the inductor behind the DC source makes the input current continuous, improving the service life of the DC source and the DC side voltage utilisation. On the basis of theoretical analysis, a simple boost control modulation strategy is used to simulate the system using Matlab/Simulink. Simulation results show that the HISL-ZSI topology has superior boosting capability, reduces capacitive voltage stress and ensures continuous input current, making the HISL-ZSI better suited for use in new energy generation applications.


Keywords: Booster capacity; Capacitive voltage stress; Improved topology; New energy power generation; Z-source inverter


  1. [1] S. Yang, X. Ding, F. Zhang, and Z. Qian, (2008) “Study on Z-source inverter for photovoltaic generation system" Proceedings of the CSEE 28(17): 112–118.
  2. [2] A. Moghassemi, M. Hosseini, and J. Olamaei, (2020) “Power quality improvement of grid-connected photovoltaic systems using Trans-z-source inverter under partial shading condition" Iranian Journal of Science and Technology, Transactions of Electrical Engineering 44: 1429–1447. DOI: 10.1007/s40998-020-00338-0.
  3. [3] T. Ahmed and S. Mekhilef, (2015) “Semi-Z-source inverter topology for grid-connected photovoltaic system" IET Power Electronics 8(1): 63–75. DOI: 10.1049/ietpel.2013.0486.
  4. [4] F. Z. Peng, (2003) “Z-source inverter" IEEE Transactions on industry applications 39(2): 504–510. DOI: 10.1109/TIA.2003.808920.
  5. [5] Y. Tang, S. Xie, and C. Zhang, (2010) “An improved Z-source inverter" IEEE transactions on power electronics 26(12): 3865–3868. DOI: 10.1109/TPEL.2009.2039953.
  6. [6] F. Z. Peng, X. Yuan, X. Fang, and Z. Qian, (2003) “Zsource inverter for adjustable speed drives" IEEE power electronics letters 1(2): 33–35. DOI: 10.1109/LPEL.2003.820935.
  7. [7] F. Z. Peng, A. Joseph, J. Wang, M. Shen, L. Chen, Z. Pan, E. Ortiz-Rivera, and Y. Huang, (2005) “Z-source inverter for motor drives" IEEE transactions on power electronics 20(4): 857–863. DOI: 10.1109/TPEL.2005.850938.
  8. [8] Z. J. Zhou, X. Zhang, P. Xu, and W. X. Shen, (2008) “Single-phase uninterruptible power supply based on Zsource inverter" IEEE Transactions on Industrial Electronics 55(8): 2997–3004. DOI: 10.1109/TIE.2008.924202.
  9. [9] J. Liu, S. Jiang, D. Cao, and F. Z. Peng, (2012) “A digital current control of quasi-Z-source inverter with battery" IEEE Transactions on Industrial Informatics 9(2): 928–937. DOI: 10.1109/TII.2012.2222653.
  10. [10] F. Z. Peng, M. Shen, and K. Holland, (2007) “Application of Z-source inverter for traction drive of fuel cell—Battery hybrid electric vehicles" IEEE Transactions on Power Electronics 22(3): 1054–1061. DOI: 10.1109/TPEL.2007.897123.
  11. [11] S. Hou, X. Xiao, C. Zhang, and Y. Xue, (2011) “Improved Z-source inverter" Electric Power Automation Equipment 31(24-28):
  12. [12] B. Ge, H. Abu-Rub, F. Z. Peng, Q. Lei, A. T. De Almeida, F. J. Ferreira, D. Sun, and Y. Liu, (2012) “An energy-stored quasi-Z-source inverter for application to photovoltaic power system" IEEE transactions on industrial electronics 60(10): 4468–4481. DOI: 10.1109/ TIE.2012.2217711.
  13. [13] S. Yang, F. Z. Peng, Q. Lei, R. Inoshita, and Z. Qian, (2010) “Current-fed quasi-Z-source inverter with voltage Buck–Boost and regeneration capability" IEEE Transactions on Industry Applications 47(2): 882–892. DOI: 10.1109/TIA.2010.2102995.
  14. [14] L. Kai, H. Yangyang, L. Haibin, W. Zhengyi, L. Yun, and D. Xinping, (2022) “NOVEL QUASI-Z-SOURCE INVERTER WITH VOLTAGE MULTIPLIER CELL" Acta Energiae Solaris Sinica 43(2): 182.
  15. [15] A. Mostaan, S. S. Malfejani, M. Soltani, and A. Baghramian. “Novel TZ source inverter with high voltage gain and reduced transformer turn ratio”. In: The 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015). IEEE. 2015, 178–182. DOI: 10.1109/PEDSTC.2015.7093270.
  16. [16] M. Zhu, K. Yu, and F. L. Luo, (2010) “Switched inductor Z-source inverter" IEEE Transactions on Power Electronics 25(8): 2150–2158. DOI: 10.1109/TPEL.2010.2046676.
  17. [17] Y. Q. C.W. Cai and K. Sheng, (2011) “Enhanced Zsource Inverter" Proceedings of the CSEE 31(S1): 259–266.
  18. [18] W. Ruoxing, W. Yingxia, Y. Huihong, et al., (2015) “Research on key technologies of double-stage T-type threelevel photovoltaic inverter" Power System Protection and Control 43(4): 58–62.
  19. [19] F. Gao, P. C. Loh, F. Blaabjerg, and D. M. Vilathgamuwa, (2007) “Dual Z-source inverter with three-level reduced common-mode switching" IEEE Transactions on industry applications 43(6): 1597–1608. DOI: 10.1109/TIA.2007.908173.
  20. [20] P. C. Loh, F. Gao, and F. Blaabjerg, (2008) “Topological and modulation design of three-level Z-source inverters" IEEE Transactions on Power Electronics 23(5): 2268–2277. DOI: 10.1109/TPEL.2008.2002452.
  21. [21] T. Hou, Y. Chen, Y. Chen, C. Bao, et al., (2021) “Research on Control of A New Quasi-Z Source Photovoltaic Grid-Connected Inverter Based on Power Feedforward and Optimized PCI of Bacterial Foraging" Journal of Applied Science and Engineering 24(4): 595–609. DOI: 10.6180/jase.202108_24(4).0015.
  22. [22] M. Periyanayagam, S. Kumar V, B. Chokkalingam, S. Padmanaban, L. Mihet-Popa, and Y. Adedayo, (2020) “A modified high voltage gain quasi-impedance source coupled inductor multilevel inverter for photovoltaic application" Energies 13(4): 874. DOI: 10.3390/en13040874.
  23. [23] C. Bharatiraja, P. Sanjeevikumar, A. Mahes, A. Saxena, K. Padmapriya, B. Mithra, A. Swathimala, and S. Raghu, (2017) “Analysis, design and investigation on a new single-phase switched quasi Z-source inverter for photovoltaic application" International Journal of Power Electronics and Drive Systems 8(2): 853. DOI: 10.11591/ijpeds.v8i2.pp853-860.
  24. [24] X. Fang, F. Li, T. Meng, et al., (2020) “Improved switched inductor Z-source inverter" Chinese Journal of Electronic Devices 43: 100–104.
  25. [25] H. Fathi and H. Madadi, (2015) “Enhanced-boost Zsource inverters with switched Z-impedance" IEEE Transactions on Industrial Electronics 63(2): 691–703. DOI: 10.1109/TIE.2015.2477346.
  26. [26] B. Ge, Q. Lei, W. Qian, and F. Z. Peng, (2011) “A family of Z-source matrix converters" IEEE Transactions on Industrial Electronics 59(1): 35–46. DOI: 10.1109/TIE. 2011.2160512.
  27. [27] X. Bicui, Z. Chenghui, and D. Xinping, (2013) “Analysis and comparison of PWM modulation strategies for z-source inverter" Advanced Technology of Electrical Engineering and Energy 32(3): 95–100.
  28. [28] Z. Chaohua, T. Yu, and X. Shaojun, (2009) “Third harmonic injection control strategy of improved Z-source inverter" Transactions of China Electrotechnical Society 24(11): 114–119.
  29. [29] P. Cong-Thanh, S. Anwen, D. Phan Quoc, A. Nguyen Bao, and P. Nguyen Xuan, (2012) “A comparison of control methods for Z-source inverter" Energy and Power Engineering 2012: DOI: 10.4236/epe.2012.44026.
  30. [30] L. Qin, M. Hu, D. D.-C. Lu, Z. Feng, Y. Wang, and J. Kan, (2017) “Buck–boost dual-leg-integrated step-up inverter with low THD and single variable control for single-phase high-frequency AC microgrids" IEEE Transactions on Power Electronics 33(7): 6278–6291. DOI: 10.1109/TPEL.2017.2742667.
  31. [31] M. Tang, S. Yang, K. Zhang, Q. Wang, C. Liu, and X. Dong, (2022) “Model predictive direct power control of energy storage quasi-Z-source grid-connected inverter" Archives of Electrical Engineering 71(1): 21–35.
  32. [32] Z. Jin, Q. Bojin, and Z. Shaoru, (2010) “Control strategy for single-phase Z-source inverter" Jurnal of Beijing University of Aeronautika and Astronautics 36(3): 357–362.
  33. [33] N. Heng, R. Chenhui, H. Yusong, et al., (2019) “Control strategy for open-winding PMSM system with common DC bus based on Z-source inverters" Proceedings of the CSEE 39(18): 5509–5519.
  34. [34] S. K. Annam, R. Pongiannan, N. Yadaiah, et al., (2022) “An Improved Space Vector PWM for Z-Source MultiLevel Neutral Point Inverter Drive" Journal of Applied Science and Engineering 25(5): 997–1006. DOI: 10. 6180/jase.202210_25(5).0015.