- [1] M. R. Islam and M. Paul, (2021) “Video deraining using the visual properties of rain streaks" IEEE Access 10: 202–212. DOI: 10.1109/ACCESS.2021.3136551.
- [2] S. Yin and H. Li, (2020) “Hot region selection based on selective search and modified fuzzy C-means in remote sensing images" IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13: 5862–5871. DOI: 10.1109/JSTARS.2020.3025582.
- [3] S.-C. Huang, Q.-V. Hoang, and T.-H. Le, (2022) “SFANet: A selective features absorption network for object detection in rainy weather conditions" IEEE Transactions on Neural Networks and Learning Systems: DOI: 10.1109/TNNLS.2021.3125679.
- [4] S. Yin, (2023) “Object Detection Based on Deep Learning: A Brief Review" IJLAI Transactions on Science and Engineering 1(02): 1–6.
- [5] H. Tian, T. Deng, and H. Yan, (2022) “Driving as well as on a sunny Day? Predicting driver’s fixation in rainy weather conditions via a dual-branch visual model" IEEE/CAA Journal of Automatica Sinica 9(7): 1335– 1338. DOI: 10.1109/JAS.2022.105716.
- [6] Y. Jiang and S. Yin, (2023) “Heterogenous-view occluded expression data recognition based on cycle-consistent adversarial network and K-SVD dictionary learning under intelligent cooperative robot environment" Computer Science and Information Systems (00): 34–34. DOI: 10.2298/CSIS221228034J.
- [7] F. Reuschling, A. Papenfuss, J. Jakobi, T. Rambau, E. Michaelsen, and N. Scherer-Negenborn. “Designing and Evaluating a Fusion of Visible and Infrared Spectrum Video Streams for Remote Tower Operations”. In: Virtual and Remote Control Tower: Research, Design, Development, Validation, and Implementation. Springer, 2022, 445–487. DOI: 10.1007/978-3-030-93650-1_19.
- [8] L. Teng, Y. Qiao, M. Shafiq, G. Srivastava, A. R. Javed, T. R. Gadekallu, and S. Yin, (2023) “FLPK-BiSeNet: Federated Learning Based on Priori Knowledge and Bilateral Segmentation Network for Image Edge Extraction" IEEE Transactions on Network and Service Management: DOI: 10.1109/TNSM.2023.3273991.
- [9] H. Wang, Y. Wu, Q. Xie, Q. Zhao, Y. Liang, S. Zhang, and D. Meng, (2021) “Structural residual learning for single image rain removal" Knowledge-Based Systems 213: 106595. DOI: 10.1016/j.knosys.2020.106595.
- [10] L.-W. Kang, C.-W. Lin, and Y.-H. Fu, (2011) “Automatic single-image-based rain streaks removal via image decomposition" IEEE transactions on image processing 21(4): 1742–1755. DOI: 10.1109/TIP.2011.2179057.
- [11] J.-H. Kim, C. Lee, J.-Y. Sim, and C.-S. Kim. “Singleimage deraining using an adaptive nonlocal means filter”. In: 2013 IEEE international conference on image processing. IEEE. 2013, 914–917. DOI: 10.1109/ICIP.2013.6738189.
- [12] Y.-L. Chen and C.-T. Hsu. “A generalized low-rank appearance model for spatio-temporally correlated rain streaks”. In: Proceedings of the IEEE international conference on computer vision. 2013, 1968–1975.
- [13] Y. Luo, Y. Xu, and H. Ji. “Removing rain from a single image via discriminative sparse coding”. In: Proceedings of the IEEE international conference on computer vision. 2015, 3397–3405.
- [14] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown. “Rain streak removal using layer priors”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, 2736–2744.
- [15] L. Zhu, C.-W. Fu, D. Lischinski, and P.-A. Heng. “Joint bi-layer optimization for single-image rain streak removal”. In: Proceedings of the IEEE international conference on computer vision. 2017, 2526–2534.
- [16] C. Xu, J. Gao, Q. Wen, and B. Wang, (2021) “Generative adversarial network for image raindrop removal of transmission line based on unmanned aerial vehicle inspection" Wireless Communications and Mobile Computing 2021: 1–8. DOI: 10.1155/2021/6668771.
- [17] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley. “Removing rain from single images via a deep detail network”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 3855–3863.
- [18] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan. “Deep joint rain detection and removal from a single image”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 1357–1366.
- [19] H. Zhang, V. Sindagi, and V. M. Patel, (2019) “Image de-raining using a conditional generative adversarial network" IEEE transactions on circuits and systems for video technology 30(11): 3943–3956. DOI: 10.1109/TCSVT.2019.2920407.
- [20] H. Zhang and V. M. Patel. “Density-aware single image de-raining using a multi-stream dense network”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, 695–704.
- [21] X. Fu, B. Liang, Y. Huang, X. Ding, and J. Paisley, (2019) “Lightweight pyramid networks for image deraining" IEEE transactions on neural networks and learning systems 31(6): 1794–1807. DOI: 10.1109/TNNLS.2019.2926481.
- [22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. “Densely connected convolutional networks”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 4700–4708.
- [23] M. Li, X. Cao, Q. Zhao, L. Zhang, and D. Meng, (2021) “Online rain/snow removal from surveillance videos" IEEE Transactions on Image Processing 30: 2029–2044. DOI: 10.1109/TIP.2021.3050313.
- [24] K. Zhang, D. Li, W. Luo, and W. Ren, (2021) “Dual attention-in-attention model for joint rain streak and raindrop removal" IEEE Transactions on Image Processing 30: 7608–7619. DOI: 10.1109/TIP.2021.3108019.
- [25] W. Wang, (2022) “Multi-scale attention generative adversarial network for single image rain removal" Pattern Recognition and Image Analysis 32(2): 436–447. DOI: 10.1134/S1054661822020201.
- [26] C.-H. Son and X.-P. Zhang, (2020) “Rain detection and removal via shrinkage-based sparse coding and learned rain dictionary" Journal of Imaging Science and Technology 64(3): 30501–1.
- [27] M.-W. Shao, L. Li, D.-Y. Meng, and W.-M. Zuo, (2021) “Uncertainty guided multi-scale attention network for raindrop removal from a single image" IEEE Transactions on Image Processing 30: 4828–4839. DOI: 10.1109/TIP.2021.3076283.
- [28] Y. Mi, S. Yuan, X. Li, and J. Zhou, (2021) “Dense residual generative adversarial network for rapid rain removal" IEEE Access 9: 24848–24858. DOI: 10.1109/ACCESS.2021.3055527.
- [29] Q. Chen and T. Wu, (2021) “Single image deraining based on the concatenation residual network" Chinese Journal of Liquid Crystal & Displays 36(2):
- [30] S. T. Ahmed and S. Sankar, (2020) “Investigative protocol design of layer optimized image compression in telemedicine environment" Procedia Computer Science 167: 2617–2622. DOI: 10.1016/j.procs.2020.03.323.
- [31] M. Gunashree, S. T. Ahmed, M. Sindhuja, P. Bhumika, B. Anusha, B. Ishwarya, et al., (2020) “A New Approach of Multilevel Unsupervised Clustering for Detecting Replication Level in Large Image Set" Procedia Computer Science 171: 1624–1633. DOI: 10.1016/j.procs.2020.04.174.
- [32] Y. Yang, J. Guan, S. Huang, W. Wan, Y. Xu, and J. Liu, (2021) “End-to-end rain removal network based on progressive residual detail supplement" IEEE Transactions on Multimedia 24: 1622–1636. DOI: 10.1109/TMM.2021.3068833.