- [1] M.-h. Tsai, J.-w. Yeh, M.-h. Tsai, and J.-w. Yeh, (2014) “High-Entropy Alloys :A Critical Review High-Entropy Alloys : A Critical Review" Materials Research Letters 3831: 107–123. DOI: https: //doi.org/10.1080/21663831.2014.912690.
- [2] B.-r. Ke, Y.-c. Sun, Y. Zhang, W.-r. Wang, W.-m. Wang, P.-y. Ma, W. Ji, and Z.-y. Fu, (2021) “Powder metallurgy of high-entropy alloys and related composites : A short review" International Journal of Minerals , Metallurgy and Materials 28: 931. DOI: https: //doi.org/10.1007/s12613-020-2221-y.
- [3] E. P. George, W. A. Curtin, and C. C. Tasan, (2020) “High entropy alloys: A focused review of mechanical properties and deformation mechanisms" Acta Materialia 188: 435–474. DOI: 10.1016/j.actamat.2019.12.015.
- [4] J. Cheng, X. Gan, S. Chen, Y. Lai, H. Xiong, and K. Zhou, (2019) “Properties and microstructure of copper/nickel-iron-coated graphite composites prepared by electroless plating and spark plasma sintering" Powder Technology 343: 705–713. DOI: 10.1016/j.powtec.2018.11.057.
- [5] R. K. Duchaniya, U. Pandel, and P. Rao, (2021) “Coatings based on high entropy alloys : An overview" Materials Today: Proceedings 44: 4467–4473. DOI: 10.1016/j.matpr.2020.10.720.
- [6] C. Ni, Y. Shi, J. Liu, and G. Huang, (2018) “Characterization of Al0.5FeCu0.7NiCoCr high entropy alloy coating on aluminum alloy by laser cladding" Optics and Laser Technology 105: 257–263. DOI: 10.1016/j.optlastec.2018.01.058.
- [7] A. Kumar, A. Singh, and A. Suhane, (2022) “Mechanically alloyed high entropy alloys: existing challenges and opportunities" Journal of Materials Research and Technology 17: 2431–2456. DOI: https: //doi.org/10.1016/j.jmrt.2022.01.141.
- [8] M. Naghiyan, R. Shoja-razavi, H. Allah, and H. Jamali, (2018) “Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods" Surface & Coatings Technology 353: 25–31. DOI: 10.1016/j.surfcoat.2018.08.061.
- [9] L. Zhou, G. Ma, H. Zhao, H. Mou, J. Xu, W. Wang, Z. Xing, Y. Li, W. Guo, and H. Wang, (2024) “Research status and prospect of extreme high-speed laser cladding technology" Optics and Laser Technology 168: 109800. DOI: 10.1016/j.optlastec.2023.109800.
- [10] A. A. Siddiqui and A. K. Dubey, (2021) “Recent trends in laser cladding and surface alloying" Optics and Laser Technology 134: 106619. DOI: 10.1016/j.optlastec.2020.106619.
- [11] Y. He, J. Zhang, H. Zhang, and G. Song, (2017) “Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High Entropy Alloy Coating by Laser Cladding" Coatings 7: DOI: 10.3390/coatings7010007.
- [12] Y. Li, H. Liang, Q. Nie, Z. Qi, D. Deng, and H. Jiang, (2020) “Microstructures and Wear Resistance of CoCrFeNi 2 V 0.5 Ti High Entropy Alloy Coating Prepared by Laser Cladding" Crystals 10: 352. DOI: 10.3390/cryst10050352.
- [13] P. Chakraborty, S. Kumar, and R. Tewari, (2022) “Effect of Laser re-melting on the microstructure of High Entropy Alloys" Materials Letters 324: 132669. DOI: 10.1016/j.matlet.2022.132669.
- [14] M. Kafali, K. Mert, A. Erdogan, S. Emre, and K. Icin, (2023) “Wear , corrosion and oxidation characteristics of consolidated and laser remelted high entropy alloys manufactured via powder metallurgy" Surface & Coatings Technology 467: 129704. DOI: 10.1016/j.surfcoat.2023.129704.
- [15] C. Pauzon, E. Hryha, P. Forêt, and L. Nyborg, (2019) “Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion" Materials and Desigh 179: 107873. DOI: 10.1016/j.matdes.2019.107873.
- [16] M. Gopinath, P. Thota, and A. K. Nath, (2019) “Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in-situ synthesized TiN" Surface & Coatings Technology 362: 150–166. DOI: 10.1016/j.surfcoat.2019.01.104.
- [17] Q. Qiao, V. A. M. Cristino, L. M. Tam, and C. T. Kwok, (2023) Surface & Coatings Technology 458: 129357. DOI: 10.1016/j.surfcoat.2023.129357.
- [18] P. F. Jiang, C. H. Zhang, S. Zhang, J. B. Zhang, J. Chen, and Y. Liu, (2020) “Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying" Materials Chemistry and Physics 255: 123571. DOI: 10.1016/j.matchemphys.2020.123571.
- [19] Z. Cai, X. Cui, G. Jin, Z. Liu, Y. Li, and M. Dong, (2017) “TEM observation on phase separation and interfaces of laser surface alloyed high-entropy alloy coating" Micron 103: 84–89. DOI: 10.1016/j.micron.2017.10.001.
- [20] S. Zhang, C. L. Wu, J. Z. Yi, and C. H. Zhang, (2015) “Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying" Surface & Coatings Technology 262: 64–69. DOI: 10.1016/j.surfcoat.2014.12.013.
- [21] F. Y. Shu, L. Wu, H. Y. Zhao, S. H. Sui, L. Zhou, J. Zhang, W. X. He, P. He, and B. S. Xu, (2018) “Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating" Materials Letters 211: 235–238. DOI: 10.1016/j.matlet.2017.09.056.
- [22] F. Shu, B. Yang, S. Dong, H. Zhao, B. Xu, F. Xu, B. Liu, P. He, and J. Feng, (2018) Applied Surface Science 450: 538–544. DOI: 10.1016/j.apsusc.2018.03.128.
- [23] X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, and P. Bai, (2019) “In fl uence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding" Journal of Alloys and Compounds 788: 485–494. DOI: 10.1016/j.jallcom.2019.02.223.
- [24] C. Ni, Y. Shi, J. Liu, and G. Huang, (2018) Optics and Laser Technology 105: 257–263. DOI: 10.1016/j.optlastec.2018.01.058.
- [25] H. Zhang, Y. Pan, Y. He, and H. Jiao, (2011) “Microstructure and properties of 6FeNiCoSiCrAlTi highentropy alloy coating prepared by laser cladding" Applied Surface Science 257: 2259–2263. DOI: 10.1016/j.apsusc.2010.09.084.
- [26] S. Zhang, C. L. Wu, J. Z. Yi, and C. H. Zhang, (2015) “Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying" Surface & Coatings Technology 262: 64–69. DOI: 10.1016/j.surfcoat.2014.12.013.
- [27] S. Zhang, C. Wu, C. Zhang, M. Guan, and J. Tan, (2016) “Laser surface alloying of FeCoCrAlNi highentropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance" Optics & Laser Technology 84: 23–31. DOI: 10.1016/j.optlastec.2016.04. 011.
- [28] C. L. Wu, S. Zhang, C. H. Zhang, H. Zhang, and S. Y. Dong, (2017) “Phase evolution and properties in laser surface alloying of FeCoCrAlCuNi x high-entropy alloy on copper substrate" Surface & Coatings Technology 315: 368–376. DOI: 10.1016/j.surfcoat.2017.02.068.
- [29] J. Sudagar, J. Lian, and W. Sha, (2013) “Electroless nickel , alloy , composite and nano coatings A critical review" Journal of Alloys and Compounds 571: 183– 204. DOI: 10.1016/j.jallcom.2013.03.107.
- [30] M. A. A. Hanim. 3. 15 Electroless Plating as Surface Finishing in Electronic Packaging. 3. 2017, 220–229. DOI: 10.1016/B978-0-12-803581-8.09177-3.
- [31] A. E. El-nikhaily and O. A. Elkady, (2021) “Improvement ductility and corrosion resistance of CoCrFeNi and AlCoCrFeNi HEAs by electroless copper technique" Journal of Materials Research and Technology 13: 463– 485. DOI: 10.1016/j.jmrt.2021.04.083.
- [32] G. Dai, S. Wu, and X. Huang, (2022) “Preparation process for high-entropy alloy coatings based on electroless plating and thermal diffusion" Journal of Alloys and Compounds 902: 163736. DOI: 10.1016/j.jallcom.2022.163736.
- [33] M.-D. Ger, Y. Sung, and J.-L. Ou, (2005) “A novel process of electroless Ni P plating by nonisothermal method" Materials Chemistry and Physics 89: 383–389. DOI: 10.1016/j.matchemphys.2004.09.018.
- [34] H. Ding, J. Dai, T. Dai, Y. Sun, T. Lu, M. Li, X. Jia, and D. Huang, (2020) “Effect of preheating / post-isothermal treatment temperature on microstructures and properties of cladding on U75V rail prepared by plasma cladding method" Surface & Coatings Technology 399: 126122. DOI: 10.1016/j.surfcoat.2020.126122.
- [35] H. Zhang, K. Mei, W. Guo, and Z. Li, (2023) “Comparative study on microstructures and properties of air-cooled and water-cooled Fe-based plasma arc cladding layers" Journal of Materials Research and Technology 23: 1599–1608. DOI: 10.1016/j.jmrt.2023.01.113.
- [36] Q. Shen, J. Xue, X. Yu, Z. Zheng, and N. Ou, (2022) “Triple-wire plasma arc cladding of Cr-Fe-Ni-Ti x highentropy alloy coatings" Surface & Coatings Technology 443: 128638. DOI: 10.1016/j.surfcoat.2022.128638.
- [37] Y. Xie, X. Wen, J. Yan, B. Huang, and J. Zhuang, (2023) “Microstructure and wear resistance of AlCoCrFeNiCuSn X high-entropy alloy coatings by plasma cladding" Vacuum 214: 112176. DOI: 10.1016/j.vacuum.2023.112176.
- [38] Y. Xie, X. Wen, B. Huang, and J. Zhuang, (2023) “Microstructure , hardness and corrosion properties of AlCoCrFeNi 2 . 1 YHf high-entropy alloy coating prepared by plasma cladding" Materials Letters 330: 133356. DOI: 10.1016/j.matlet.2022.133356.
- [39] G. B. Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, (2017) “Plasma electrolytic oxidation of magnesium and its alloys : Mechanism , properties and applications" Journal of Magnesium and Alloys 5: 74–132. DOI: 10.1016/j.jma.2017.02.004.
- [40] J. Li, Y. Huang, X. Meng, and Y. Xie, (2019) “A Review on High Entropy Alloys Coatings : Fabrication Processes and Property Assessment" Advanced Engineering Materials 1900343: 1–27. DOI: 10.1002/adem.201900343.
- [41] Q. Fang, Y. Chen, J. Li, Y. Liu, and Y. Liu, (2018) “Microstructure and mechanical properties of FeCoCrNiNb X high-entropy alloy coatings" Physica B: Physics of Condensed Matter 550: 112–116. DOI: 10.1016/j.physb.2018.08.044.
- [42] G. Mauer, R. Vaßen, and D. Stöver, (2007) “Controlling the oxygen contents in vacuum plasma sprayed metal alloy coatings" Surface and Coatings Technology 201: 4796–4799. DOI: 10.1016/j.surfcoat.2006.10.008.
- [43] M. F. Morks, (2010) “Plasma spraying of zirconia titania silica bio-ceramic composite coating for implant application" Materials Letters 64: 1968–1971. DOI: 10.1016/j.matlet.2010.06.016.
- [44] C. M. Hackett, G. S. Settles, and J. D. Miller, (1994) “On the gas dynamics of HVOF thermal sprays" Journal of Thermal Spray Technology 3: 299–304. DOI: 10.1007/BF02646278.
- [45] S. Rech, A. Surpi, S. Vezzù, A. Patelli, A. Trentin, J. Glor, J. Frodelius, L. Hultman, and P. Eklund, (2013) “Cold-spray deposition of Ti2AlC coatings" Vacuum 94: 69–73. DOI: 10.1016/j.vacuum.2013.01.023.
- [46] Y. Tao, T. Xiong, C. Sun, H. Jin, H. Du, and T. Li, (2009) “Effect of α-Al 2 O 3 on the properties of cold sprayed Al/α-Al 2 O 3 composite coatings on AZ91D magnesium alloy" Applied Surface Science 256: 261– 266. DOI: 10.1016/j.apsusc.2009.08.012.
- [47] A. Siao, M. Ang, C. C. Berndt, M. L. Sesso, A. Anupam, S. Praveen, R. S. Kottada, and B. S. Murty, (2015) “Plasma-Sprayed High Entropy Alloys : Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi" Matellurgical and Materials Transaction A 46A: 791–800. DOI: 10.1007/s11661-014-2644-z.
- [48] L. Tian, Z. Feng, and W. Xiong, (2018) “Microstructure, Microhardness, and Wear Resistance of AlCoCrFeNiTi/Ni60 Coating by Plasma Spraying" Coatings 8: 112. DOI: 10.3390/coatings8030112.
- [49] W.-l. Hsu, H. Murakami, J.-w. Yeh, A.-c. Yeh, and K. Shimoda, (2017) “On the Study of Thermal Sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay Coating" Surface & Coatings Technology 316: 71–74. DOI: 10.1016/j.surfcoat.2017.02.073.
- [50] M. Löbel, T. Lindner, T. Mehner, and T. Lampke, (2017) “Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF" Coatings 7: 144. DOI: 10.3390/coatings7090144.
- [51] S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, and K. Wen, (2019) “Deposition of FeCoNiCrMn high entropy alloy ( HEA ) coating via cold spraying" Journal of Materials Science & Technology 35: 1003–1007. DOI: 10.1016/j.jmst.2018.12.015.
- [52] Y. Zou, Z. Qiu, C. Huang, D. Zeng, and R. Lupoi, (2022) “Microstructure and tribological properties of Al 2 O 3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray" Surface & Coatings Technology 434: 128205. DOI: 10.1016/j.surfcoat.2022.128205.
- [53] M. Xue, X. Mao, Y. Lv, Y. Chi, Y. Yang, J. He, and Y. Dong, (2021) “Comparison of Micro-nano FeCoNiCrAl and FeCoNiCrMn Coatings Prepared from Mechanical Alloyed High-entropy Alloy Powders" Journal of Thermal Spray Technology 30: 1666–1678. DOI: 10.1007/s11666-021-01210-1.
- [54] P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, (2016) “Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders" Advanced Powder Technology 27: 1128–1133. DOI: 10.1016/j.apt.2016.03.023.
- [55] A. Fasasi, S. Roy, A. Galerie, M. Pons, and M. Caillet, (1992) “Laser surface alloying of Ti-6Al-4V with silicon for improved hardness and high-temperature oxidation resistance" Materials Letters 13: 204–211. DOI: 10.1016/0167-577X(92)90221-5.
- [56] J. Jiang, X. Feng, Y. Shen, C. Lu, and Y. Tian, (2019) “Surface & Coatings Technology Oxidation behavior of CrAlSi12 composite coatings on Ti-6Al-4V alloy substrate fabricated via high-energy mechanical alloying method" Surface & Coatings Technology 367: 212–224. DOI: 10.1016/j.surfcoat.2019.03.070.
- [57] C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, (2017) “High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering" Surfaces and Interfaces 9: 36–43. DOI: 10.1016/j. surfin.2017.06.012.
- [58] W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang, (2017) “Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sinterin" Advanced Powder Technology 28: 2556–2563. DOI: 10.1016/j.apt.2017.07.006.
- [59] A. Verma, P. Tarate, A. C. Abhyankar, M. R. Mohape, and D. S. Gowtam, (2019) “High temperature wear in CoCrFeNiCu x high entropy alloys: The role of Cu" Scripta Materialia 161: 28–31. DOI: 10.1016/j.scriptamat.2018.10.007.
- [60] C.-l. Chen, (2020) “Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying" Surface & Coatings Technology 386: 125443. DOI: 10.1016/j.surfcoat.2020.125443.
- [61] Y. Tian, C. Lu, Y. Shen, and X. Feng, (2019) “Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method" Surfaces and Interfaces 15: 135–140. DOI: 10.1016/j.surfin.2019.02.004.
- [62] E. Vmcoille, (1993) “Dry sliding wear of TiN based ternary PVD coatings" Wear 165: 41–49.
- [63] A. Zhang, J. Han, B. Su, and J. Meng, (2018) “A promising new high temperature self-lubricating material : CoCrFeNiS 0 . 5 high entropy alloy" Materials Science & Engineering A 731: 36–43. DOI: 10.1016/j.msea.2018.06.030.
- [64] R. Mitra and Y. R. Mahajan, (1995) “Interfaces in discontinuously reinforced metal matrix composites: An overview" Bulletin of Materials Science 18: 405–434. DOI: 10.1007/BF02749771.
- [65] Z. Rahmati, H. Jamshidi Aval, S. Nourouzi, and R. Jamaati, (2022) “Effect of copper reinforcement on the microstructure, macrotexture, and wear properties of a friction-surfaced Al-Cu-Mg coating" Surface and Coatings Technology 438: 128380. DOI: 10.1016/j.surfcoat.2022.128380.
- [66] H. Liu, Q. Gao, J. Dai, P. Chen, W. Gao, and J. Hao, (2022) “Tribology International Microstructure and hightemperature wear behavior of CoCrFeNiW x high-entropy alloy coatings fabricated by laser cladding" Tribology International 172: 107574. DOI: 10.1016/j.triboint. 2022.107574.
- [67] X. Chen, Y. Du, and Y. W. Chung, (2019) “Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings" Thin Solid Films 688: 137265. DOI: 10.1016/j.tsf.2019.04.040.
- [68] H. T. Vo, M. Rebelo, D. Figueiredo, S. Kolozsv, P. Hosemann, and R. Franz, (2021) “High temperature fracture toughness of single-layer CrAlN and CrAlSiN hard coatings" Surface & Coatings Technology 409: 126909. DOI: 10.1016/j.surfcoat.2021.126909.
- [69] C. Wang, J. Miranda, Y. Yang, and Y.-w. Chung, (2016) “Investigation of hardness and fracture toughness properties of Fe / VC multilayer coatings with coherent interfaces" Surface & Coatings Technology 288: 179–184. DOI: 10.1016/j.surfcoat.2016.01.025.
- [70] S. Dal, A. Günen, N. Makuch, Y. Alt?nay, and C. Çarbo, (2022) “Determination of fracture toughness of boride layers grown on by nanoindentation" Ceramics International 48: 36410–36424. DOI: 10.1016/j.ceramint.2022.08.201.
- [71] Y. Shi, B. Yang, and P. K. Liaw, (2017) “Corrosionresistant high-entropy alloys: A review" Metals 7: 1–18. DOI: 10.3390/met7020043.
- [72] M. Kafali, K. M. Doleker, A. Erdogan, S. E. Sunbul, K. Icin, A. Yildiz, and M. S. Gok, (2023) “Wear, corrosion and oxidation characteristics of consolidated and laser remelted high entropy alloys manufactured via powder metallurgy" Surface and Coatings Technology 467: 129704. DOI: 10.1016/j.surfcoat.2023.129704.
- [73] W. Li, P. Liu, and P. K. Liaw, (2018) “Microstructures and properties of high-entropy alloy films and coatings : a review" Materials Research Letters 3831: 199 229. DOI: 10.1080/21663831.2018.1434248.