Ch. Srinivasa Rao, S. Ravi KumarThis email address is being protected from spambots. You need JavaScript enabled to view it., and K.K.M. Sarma
Mathematics Department, Andhra University, Visakhapatnam, India - 530003.
Received: August 26, 2023 Accepted: December 16, 2023 Publication Date: February 19, 2024
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
We introduce the concept of B4-metric space, also known as 4-dimensional ball metric space. Which is natural extension of metric spaces, b-metric spaces and S-metric spaces. We establish unique Fixed point theorems for a self-map on a complete 4-dimensional ball metric space with suitable contractive conditions. We also illustrate their applications. Suitable examples are provided as and when necessary.
Keywords: B4-metric space, 4-dimensional ball metric space and Fixed point theorems
[1] K. Sarma, C. S. Rao, and S. R. Kumar, (2023) “B4- metric spaces and Contractions" International Journal of Engineering Research and Applications 13(1): 43–50.
[2] S. Sedghi, N. Shobe, and A. Aliouche, (2012) “A generalization of fixed point theorems in S-metric spaces" Matematiˇcki vesnik 64(249): 258–266.
[3] O. Adewale and C. Iluno, (2022) “Fixed point theorems on rectangular S-metric spaces" Scientific African 16: e01202. DOI: 10.1016/j.sciaf.2022.e01202.
[4] H. Aydi, N. Ta¸s, N. Y. Özgür, and N. Mlaiki, (2019) “Fixed-discs in rectangular metric spaces" Symmetry 11(2): 294. DOI: 10.3390/sym11020294.
[5] A. Aghajani, M. Abbas, and J. R. Roshan, (2014) “Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces" Mathematica Slovaca 64: 941–960. DOI: 10.2478/s12175-014-0250-6.
[6] T. Van An, N. Van Dung, and V. T. Le Hang, (2013) “A new approach to fixed point theorems on G-metric spaces" Topology and its Applications 160(12): 1486–1493. DOI: 10.1016/j.topol.2013.05.027.
[7] D. Bailey, (1966) “Some theorems on contractive mappings" Journal of the London Mathematical Society 1(1): 101–106. DOI: 10.1112/jlms/s1-41.1.101.
[8] S.-S. Chang and Q. C. Zhong, (1990) “On Rhoades’ open questions" Proceedings of the American Mathematical Society 109(1): 269–274.
[9] L. B. Ciri´c, (1974) ´ “A Generalization of Banach’s Contraction Principle" Proceedings of the American Mathematical Society 45(2): 267–273.
[10] P. DEBNATH, (2023) “BEST PROXIMITY POINTS OF MULTIVALUED GERAGHTY CONTRACTIONS": DOI: 10.18514/MMN.2023.3984.
[11] P. Debnath, (2021) “Set-valued Meir–Keeler, Geraghty and Edelstein type fixed point results in b-metric spaces" Rendiconti del Circolo Matematico di Palermo Series 2 70(3): 1389–1398. DOI: 10.1007/s12215-020-00561-y.
[12] P. Debnath, (2022) “Banach, Kannan, Chatterjea, and Reich-type contractive inequalities for multivalued mappings and their common fixed points" Mathematical Methods in the Applied Sciences 45(3): 1587–1596. DOI: 10.1002/mma.7875.
[13] P. Debnath, (2022) “A new extension of Kannan’s fixed point theorem via F-contraction with application to integral equations" Asian-European Journal of Mathematics 15(07): 2250123. DOI: 10.1002/mma.7875.
[14] P. Debnath, Z. D. Mitrovi´c, and H. M. Srivastava, (2021) “Fixed points of some asymptotically regular multivalued mappings satisfying a Kannan-type condition" Axioms 10(1): 24. DOI: 10.3390/axioms10010024.
[15] P. Debnath, Z. D. Mitrovi´c, and S. Y. Cho, (2021) “Common fixed points of Kannan, Chatterjea and Reich type pairs of self-maps in a complete metric space" São Paulo Journal of Mathematical Sciences 15: 383–391. DOI: 10.1007/s40863-020-00196-y.
[16] N. Van Dung, N. T. Hieu, and S. Radojevi´c, (2014) “Fixed point theorems for g-monotone maps on partially ordered S-metric spaces." Filomat 28(9): 1885–1898.
[17] B. Fisher, (1979) “Quasicontractions on metric spaces" Proceedings of the American Mathematical Society 75(2): 321–325.
[18] V. Gupta and R. Deep, (2015) “Some Coupled Fixed Points Theorems in partially ordered S-metric spaces" Miskolc Mathematical Notes 16(1): 181–194.
[19] N. T. Hieu, N. T. Thanh Ly, and N. V. Dung, (2014) “A generalization of Ciric quasi-contractions for maps on S-metric spaces" Thai Journal of Mathematics 13(2): 369–380.
[20] N. Konwar, P. Debnath, S. Radenov´c, and H. Aydi, (2023) “A new extension of banach-caristi theorem and its application to nonlinear functional equations" Kragujevac Journal of Mathematics 47(3): 409–416. DOI: 10.46793/KgJMat2303.409K.
[21] N. Y. Özgür and N. Ta¸s, (2017) “Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25)" Mathematical Sciences 11: 7–16. DOI: 10.1007/s40096-016-0199-4.
[22] B. E. Rhoades, (1977) “A comparison of various definitions of contractive mappings" Transactions of the American Mathematical Society 226: 257–290.
[23] S. Sedghi and N. Van Dung, (2014) “Fixed point theorems on S-metric spaces" Matematiˇcki Vesnik (255): 113–124.
[24] C. S. Rao, S. R. Kumar, and K. Sarma, “Contractive mappings on Bn-metric spaces":
[25] C. Srinivasa, S. Kumar, and K. Sarma, (2023) “Fixed point theorems on B4-metric space":
[26] C. S. Rao, S. R. Kumar, K. Sarma, and L. Rathour, (2023) “Fixed point theorems for f-contractive type mappings on a dislocated quasi b-metric space":
[27] C. S. Rao, S. R. Kumar, and K. Sarma, “Contractive mappings on Bn-metric spaces Section A-Research paper Contractive mappings on B n-metric spaces" Chem. Bull 2023: 5399–5412.
[28] B. C. Tripathy, S. Paul, and N. Das, (2023) “Some fixed point theorems in generalized M-fuzzy metric space" Boletim da Sociedade Paranaense de Matemática 41: 1–7. DOI: 10.5269/bspm.51771.
[29] B. C. Tripathy, S. Paul, and N. R. Das, (2015) “Fixed point and periodic point theorems in fuzzy metric space" Songklanakarin Journal of Science and Technology 37(1): 89–92.
[30] B. C. Tripathy, S. Paul, and N. R. Das, (2014) “A fixed point theorem in a generalized fuzzy metric space" Bol. Soc. Paran. Mat 32(2): 221–227. DOI: 10.5269/bspm. v32i2.20896. [31] S. Acharjee, (2016) “Fixed point theorem in fuzzy metric space" Boletim da Sociedade Paranaense de Matemática 34(1): 273–277.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.