- [1] Y. Lu, Z. Tian, Q. Zhang, R. Zhou, and C. Chu, (2021) “Data augmentation strategy for short-term heating load prediction model of residential building" Energy 235: 121328. DOI: 10.1016/j.energy.2021.121328.
- [2] R. Chaganti, F. Rustam, T. Daghriri, I. de la Torre Díez, J. L. V. Mazón, C. L. Rodríguez, and I. Ashraf, (2022) “Building heating and cooling load prediction using ensemble machine learning model" Sensors 22: 7692. DOI: 10.3390/s22197692.
- [3] C. Wang, J. Yuan, K. Huang, J. Zhang, L. Zheng, Z. Zhou, and Y. Zhang, (2022) “Research on thermal load prediction of district heating station based on transfer learning" Energy 239: 122309. DOI: 10.1016/j.energy. 2021.122309.
- [4] M. Proti´c, S. Shamshirband, M. H. Anisi, D. Petkovi´c, D. Miti´c, M. Raos, M. Arif, and K. A. Alam, (2015) “Appraisal of soft computing methods for short term consumers’ heat load prediction in district heating systems" Energy 82: 697–704. DOI: 10.1016/j.energy.2015.01.079.
- [5] J. Ling, N. Dai, J. Xing, and H. Tong, (2021) “An improved input variable selection method of the data-driven model for building heating load prediction" Journal of Building Engineering 44: 103255. DOI: 10.1016/j.jobe.2021.103255.
- [6] F. Dalipi, S. Y. Yayilgan, and A. Gebremedhin, (2016) “Data-driven machine-learning model in district heating system for heat load prediction: A comparison study" Applied Computational Intelligence and Soft Computing 2016: DOI: 10.1155/2016/3403150.
- [7] G. Xue, Y. Pan, T. Lin, J. Song, C. Qi, and Z. Wang, (2019) “District heating load prediction algorithm based on feature fusion LSTM model" Energies 12: 2122. DOI: 10.3390/en12112122.
- [8] K. Kato, M. Sakawa, K. Ishimaru, S. Ushiro, and T. Shibano. “Heat load prediction through recurrent neural network in district heating and cooling systems”. In: IEEE, 2008, 1401–1406. DOI: 10.1109/ICSMC.2008.4811482.
- [9] J. Yuan, Z. Zhou, H. Tang, C. Wang, S. Lu, Z. Han, J. Zhang, and Y. Sheng, (2020) “Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system" Energy 199: 117454. DOI: 10.1016/j.energy.2020.117454.
- [10] Y. Zhang, Z. Zhou, J. Liu, and J. Yuan, (2022) “Data augmentation for improving heating load prediction of heating substation based on TimeGAN" Energy 260: 124919. DOI: 10.1016/j.energy.2022.124919.
- [11] G. Xue, C. Qi, H. Li, X. Kong, and J. Song, (2020) “Heating load prediction based on attention long short term memory: A case study of Xingtai" Energy 203: 117846. DOI: 10.1016/j.energy.2020.117846.
- [12] Q. Zhang, Z. Tian, Z. Ma, G. Li, Y. Lu, and J. Niu, (2020) “Development of the heating load prediction model for the residential building of district heating based on model calibration" Energy 205: 117949. DOI: 10.1016/j.energy.2020.117949.
- [13] E. Guelpa, L. Marincioni, M. Capone, S. Deputato, and V. Verda, (2019) “Thermal load prediction in district heating systems" Energy 176: 693–703. DOI: 10.1016/j.rser.2015.04.020.
- [14] S. Shamshirband, D. Petkovi´c, R. Enayatifar, A. H. Abdullah, D. Markovi´c, M. Lee, and R. Ahmad, (2015) “Heat load prediction in district heating systems with adaptive neuro-fuzzy method" Renewable and Sustainable Energy Reviews 48: 760–767. DOI: 10.1016/j.enbuild. 2017.11.002.
- [15] Y. Ding, Q. Zhang, T. Yuan, and K. Yang, (2018) “Model input selection for building heating load prediction: A case study for an office building in Tianjin" Energy and Buildings 159: 254–270. DOI: 10.1016/j.jobe.2019. 100950.
- [16] M. Gong, Y. Bai, J. Qin, J. Wang, P. Yang, and S. Wang, (2020) “Gradient boosting machine for predicting return temperature of district heating system: A case study for residential buildings in Tianjin" Journal of Building Engineering 27: 100950. DOI: 10.1016/j.jobe.2019.100950.
- [17] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253–1264. DOI: 10.1007/s12652-019-01317-y.
- [18] B. Sadaghat, S. Afzal, and A. J. Khiavi, (2024) “Residential building energy consumption estimation: A novel ensemble and hybrid machine learning approach" Expert Systems with Applications 251: 123934. DOI: 10.1016/j.eswa.2024.123934.
- [19] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10: 3829. DOI: 10.3390/app10113829.
- [20] G. Zhou, H. Moayedi, M. Bahiraei, and Z. Lyu, (2020) “Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings" Journal of Cleaner Production 254: 120082. DOI: 10.1016/j.jclepro.2020.120082.
- [21] A. Botchkarev, (2018) “Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology" arXiv preprint arXiv:1809.03006: DOI: 10.48550/arXiv.1809.03006.
- [22] F. MiarNaeimi, G. Azizyan, and M. Rashki, (2021) “Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems" Knowledge-Based Systems 213: 106711. DOI: 10.1016/j.knosys.2020.106711.
- [23] S. Kumar, G. G. Tejani, N. Pholdee, and S. Bureerat, (2021) “Multiobjecitve structural optimization using improved heat transfer search" Knowledge-Based Systems 219: 106811. DOI: 10.1016/j.knosys.2021.106811.
- [24] Z. Liu, P. Jiang, J. Wang, and L. Zhang, (2021) “Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multiobjective version of mayfly optimization algorithm" Expert Systems with Applications 177: 114974. DOI: 10.1016/j.eswa.2021.114974.
- [25] Y. Li, W. Lu, Z. Pan, Z. Wang, and G. Dong, (2023) “Simultaneous identification of groundwater contaminant source and hydraulic parameters based on multilayer perceptron and flying foxes optimization" Environmental Science and Pollution Research 30: 78933–78947. DOI: 10.1007/s11356-023-27574-1.
- [26] R. Aalloul, A. Elaissaoui, M. Benlattar, and R. Adhiri, (2023) “Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)" Energies 16: 3531. DOI: 10.3390/en16083531.
- [27] A. G. Parlos, K. T. Chong, and A. F. Atiya, (1994) “Application of the recurrent multilayer perceptron in modeling complex process dynamics" IEEE Transactions on Neural Networks 5: 255–266. DOI: 10.1109/72.279189.
- [28] H. Taud and J.-F. Mas, (2018) “Multilayer perceptron (MLP)" Geomatic approaches for modeling land change scenarios: 451–455. DOI: 10.1007/978-3-319- 60801-3_27.
- [29] F. Murtagh, (1991) “Multilayer perceptrons for classification and regression" Neurocomputing 2: 183–197. DOI: 10.1016/0925-2312(91)90023-5.
- [30] H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. A. J. Idrissi, (2016) “Multilayer perceptron: Architecture optimization and training": DOI: 10.9781/ijimai.2016.415.
- [31] L. Noriega, (2005) “Multilayer perceptron tutorial" School of Computing. Staffordshire University 4: 444.
- [32] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, (2017) “A review on time series forecasting techniques for building energy consumption" Renewable and Sustainable Energy Reviews 74: 902–924. DOI: 10.1016/j.rser.2017.02.085.
- [33] N. Xu, Y. Dang, and Y. Gong, (2017) “Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China" Energy 118: 473–480. DOI: 10.1016/j.energy.2016.10.003.
- [34] C. Li, Z. Ding, D. Zhao, J. Yi, and G. Zhang, (2017) “Building energy consumption prediction: An extreme deep learning approach" Energies 10: 1525. DOI: 10.3390/en10101525.
- [35] C. Robinson, B. Dilkina, J. Hubbs, W. Zhang, S. Guhathakurta, M. A. Brown, and R. M. Pendyala, (2017) “Machine learning approaches for estimating commercial building energy consumption" Applied energy 208: 889–904. DOI: 10.1016/j.apenergy.2017.09.060.
- [36] J. Zhu, Z. Yang, Y. Chang, Y. Guo, K. Zhu, and J. Zhang. “A novel LSTM based deep learning approach for multi-time scale electric vehicles charging load prediction”. In: IEEE, 2019, 3531–3536. DOI: 10.1109/ISGT-Asia.2019.8881655.
- [37] N. Mohammadi and J. E. Taylor, (2017) “Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction" Applied energy 195: 810–818. DOI: 10.1016/j.apenergy.2017.03.044.
- [38] D. Hsu, (2015) “Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data" Applied energy 160: 153– 163. DOI: 10.1016/j.apenergy.2015.08.126.
- [39] S. Naji, A. Keivani, S. Shamshirband, U. J. Alengaram, M. Z. Jumaat, Z. Mansor, and M. Lee, (2016) “Estimating building energy consumption using extreme learning machine method" Energy 97: 506–516. DOI: 10.1016/j. energy.2015.11.037.
- [40] F. Zhang, C. Deb, S. E. Lee, J. Yang, and K. W. Shah, (2016) “Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique" Energy and Buildings 126: 94–103. DOI: 10.1016/j.enbuild. 2016.05.028.
- [41] M. W. Ahmad, M. Mourshed, and Y. Rezgui, (2017) “Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption" Energy and buildings 147: 77–89. DOI: 10.1016/j.enbuild.2017.04.038.
- [42] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10: 3829. DOI: 10.3390/app10113829.
- [43] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253– 1264. DOI: 10.1007/s12652-019-01317-y.
- [44] T.-Y. Kim and S.-B. Cho, (2019) “Predicting residential energy consumption using CNN-LSTM neural networks" Energy 182: 72–81. DOI: 10.1016/j.energy.2019.05.230.
- [45] M. R. Akbarzadeh, H. Ghafourian, A. Anvari, R. Pourhanasa, and M. L. Nehdi, (2023) “Estimating compressive strength of concrete using neural electromagnetic field optimization" Materials 16: 4200. DOI: 10.3390/ma16114200.
- [46] Z. Wang, T. Hong, and M. A. Piette, (2020) “Building thermal load prediction through shallow machine learning and deep learning" Applied Energy 263: 114683. DOI: 10.1016/j.apenergy.2020.114683.
- [47] B. Sedaghat, A. J. Khiavi, B. Naeim, E. Khajavi, and A. R. T. Khanghah, (2023) “Evaluation of Object-Based and Pixel-Based Technique for Extracting Snow Cover Surface Using Landsat 8 Satellite Images (Case Study Damavand Mountain Range)" Advances in Engineering and Intelligence Systems 2: 87–100. DOI: 10.22034/AEIS.2023.427451.1147.
- [48] S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, (2023) “Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms" Energy 282: 128446. DOI: 10.1016/j.energy.2023.128446.
- [49] M. Sajjad, S. U. Khan, N. Khan, I. U. Haq, A. Ullah, M. Y. Lee, and S. W. Baik, (2020) “Towards efficient building designing: Heating and cooling load prediction via multi-output model" Sensors 20: 6419. DOI: 10.3390/s20226419.