Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Sultan Yulussov1, Omirserik Baigenzhenov1This email address is being protected from spambots. You need JavaScript enabled to view it., Alibek Khabiyev2, Bigamila Torsykbayeva3, and Yerik Merkibayev1

1Department of Metallurgical Engineering, Satbayev university, Almaty, Kazakhstan

2Department of Chemical and Biochemical Engineering, Satbayev university, Almaty, Kazakhstan

3Department of Pharmaceutical Disciplines, Astana Medical University, Astana, Kazakhstan


 

 

Received: January 11, 2024
Accepted: April 30, 2024
Publication Date: August 3, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202505_28(5).0020  


The article presents an overview of the basic technologies employed for the processing of these vanadiumcontaining materials. These technologies encompass a range of extraction methods, including roasting, leaching, solvent extraction, and precipitation. The specific techniques employed for each source material are discussed in detail, highlighting their advantages and limitations. Black shale ore, a significant source of vanadium, is explored for its extraction potential. Vanadium-containing titanium magnetite ores, known with their abundant vanadium content, are investigated as another prominent source. Additionally, spent vanadium catalysts, which are commonly utilized in several industrial processes, are examined as a potential source for vanadium extraction. Furthermore, vanadium-containing bauxite raw materials, oil, and steel production slags are evaluated for their vanadium extraction capabilities. Overall, this article provides a comprehensive understanding of the various sources of vanadium and the technologies employed for their extraction. The insights presented here will aid researchers and industry professionals in developing efficient and sustainable processes for vanadium extraction, ensuring a stable supply of this valuable transition metal for various applications.


Keywords: Vanadium-Containing Sources, black shale ore, titanium magnetite ores, spent vanadium catalysts, bauxite residues, oil residues.


  1. [1] A. Mannucci, I. Tomashchuk, A. Mathieu, R. Bolot, E. Cicala, S. Lafaye, and C. Roudeix, (2020) “Use of pure vanadium and niobium/copper inserts for laser welding of titanium to stainless steel" Journal of Advanced Joining Processes 1: 100022. DOI: 10.1016/j.jajp.2020.100022.
  2. [2] I. O. Aimbetova, A. Kuzmin, D. N. Myrkheyeva, E. O. Aimbetova, and L. Kalimoldina, (2023) “An effect of hydrothermal synthesis time on the specific capacitance of vanadium pentoxide" International Journal of Energy for a Clean Environment 24(2): DOI: 10.1615/interjenercleanenv.2022043086.
  3. [3] B. Khussain, A. Brodskiy, A. Sass, K. Rakhmetova, V. Yaskevich, V. Grigor’eva, A. Ishmukhamedov, A. Shapovalov, I. Shlygina, S. Tungatarova, et al., (2022) “Synthesis of vanadium-containing catalytically active phases for exhaust gas neutralizers of motor vehicles and industrial enterprises" Catalysts 12(8): 842. DOI: doi.org/10.1615/interjenercleanenv.2022043086.
  4. [4] J. Pisk and D. Agustin, (2022) “Molybdenum, vanadium, and tungsten-based catalysts for sustainable (ep) Oxidation" Molecules 27(18): 6011. DOI: doi.org/10.3390/molecules27186011.
  5. [5] A. Nasimifar and J. V. Mehrabani, (2022) “A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources" International Journal of Mining and Geo-Engineering 56(4): 361–382. DOI: 10.22059/ijmge.2022.319012.594893.
  6. [6] G. J. Simandl and S. Paradis, (2022) “Vanadium as a critical material: economic geology with emphasis on market and the main deposit types" Applied Earth Science 131(4): 218–236. DOI: doi.org/10.1080/25726838.2022.2102883.
  7. [7] L. Wang, Y. Zhang, T. Liu, J. Huang, N. Xue, and Q. Zheng, (2020) “Separation of iron impurity during vanadium acid leaching from black shale by yavapaiiteprecipitating method" Hydrometallurgy 191: 105191. DOI: doi.org/10.1016/j.hydromet.2019.105191.
  8. [8] J. Yu, N. Hu, H. Xiao, P. Gao, and Y. Sun, (2021) “Reduction behaviors of vanadium-titanium magnetite with H2 via a fluidized bed" Powder Technology 385: 83–91. DOI: doi.org/10.1016/j.powtec.2021.02.038.
  9. [9] E. Romanovskaia, V. Romanovski, W. Kwapinski, and I. Kurilo, (2021) “Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach" Hydrometallurgy 200: 105568. DOI: doi.org/10.1016/j.hydromet.2021.105568.
  10. [10] W. Li, X. Yan, Z. Niu, and X. Zhu, (2021) “Selective recovery of vanadium from red mud by leaching with using oxalic acid and sodium sulfite" Journal of Environmental Chemical Engineering 9(4): 105669. DOI: doi.org/10.1016/j.jece.2021.105669.
  11. [11] I. Sugiyama and A. Williams-Jones, (2018) “An approach to determining nickel, vanadium and other metal concentrations in crude oil" Analytica chimica acta 1002: 18–25. DOI: doi.org/10.1016/j.aca.2017.11.040.
  12. [12] J.-y. Xiang, W. Xin, G.-s. Pei, Q.-y. Huang, and X.-w. LÜ, (2020) “Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching" Transactions of Nonferrous Metals Society of China 30(11): 3114–3123. DOI: doi.org/10.1016/s1003-6326(20)65447-4.
  13. [13] B. Chen, S. Bao, Y. Zhang, and S. Li, (2020) “A highefficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound" Separation and Purification Technology 240: 116624. DOI: doi.org/10.1016/j.seppur.2020.116624.
  14. [14] H. Peng, (2019) “A literature review on leaching and recovery of vanadium" Journal of Environmental Chemical Engineering 7(5): 103313. DOI: doi.org/10.1016/j.jece.2019.103313.
  15. [15] S. Liu, E. Ding, P. Ning, G. Xie, and N. Yang, (2021) “Vanadium extraction from roasted vanadium-bearing steel slag via pressure acid leaching" Journal of Environmental Chemical Engineering 9(3): 105195. DOI: doi.org/10.1016/j.jece.2021.105195.
  16. [16] H.-Y. Li, K. Wang, W.-H. Hua, Z. Yang, W. Zhou, and B. Xie, (2016) “Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate" Hydrometallurgy 160: 18–25. DOI: doi.org/10.1016/j.hydromet.2015.11.014.
  17. [17] O. Baigenzhenov, S. Yulussov, A. Khabiyev, M. Sydykanov, and M. Akbarov, (2019) “Investigation of the leaching process of rare-earth metals from the black shale ores of Greater Karatau" Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources 310(3): 76–80. DOI: doi.org/10.31643/2019/6445.31.
  18. [18] H. Mahandra, R. Singh, and B. Gupta, (2020) “Recovery of vanadium (V) from synthetic and real leach solutions of spent catalyst by solvent extraction using Cyphos IL 104" Hydrometallurgy 196: 105405. DOI: doi.org/10.1016/j.hydromet.2020.105405.
  19. [19] H. Wang, Y. Feng, H. Li, H. Li, and H. Wu, (2020) “Recovery of vanadium from acid leaching solutions of spent oil hydrotreating catalyst using solvent extraction with D2EHPA (P204)" Hydrometallurgy 195: 105404. DOI: doi.org/10.1016/j.hydromet.2020.105404.
  20. [20] A. R. Gollakota, V. Volli, and C. M. Shu, (2019) “Progressive utilisation prospects of coal fly ash: A review" Science of the Total Environment 672: 951–989. DOI: doi.org/10.1016/j.scitotenv.2019.03.337.
  21. [21] X. Zeng, F. Wang, H. Zhang, L. Cui, J. Yu, and G. Xu, (2015) “Extraction of vanadium from stone coal by roasting in a fluidized bed reactor" Fuel 142: 180–188. DOI: doi.org/10.1016/j.fuel.2014.10.068.
  22. [22] Y. Ma, X. Wang, S. Stopic, M. Wang, D. Kremer, H. Wotruba, and B. Friedrich, (2018) “Preparation of vanadium oxides from a vanadium (IV) strip liquor extracted from vanadium-bearing shale using an eco-friendly method" Metals 8(12): 994. DOI: doi.org/10.3390/met8120994.
  23. [23] A. Khabiyev, O. Baigenzhenov, S. Yulussov, M. Akbarov, and M. Sydykanov, (2020) “Study of leaching processes of sintered black shale ore" Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources 315(4): 5–10. DOI: doi.org/10.31643/2020/6445.31.
  24. [24] X. Hu, Y. Yue, and X. Peng, (2018) “Release kinetics of vanadium from vanadium (III, IV and V) oxides: Effect of pH, temperature and oxide dose" Journal of Environmental Sciences 67: 96–103. DOI: doi.org/10.1016/j.jes.2017.08.006.
  25. [25] P. Hu, Y. Zhang, T. Liu, J. Huang, Y. Yuan, and N. Xue, (2018) “Source separation of vanadium over iron from roasted vanadium-bearing shale during acid leaching via ferric fluoride surface coating" Journal of cleaner production 181: 399–407. DOI: doi.org/10.1016/j.jclepro.2018.01.226.
  26. [26] B. Pan, W. Jin, B. Liu, S. Zheng, S. Wang, H. Du, and Y. Zhang, (2017) “Cleaner production of vanadium oxides by cation-exchange membrane-assisted electrolysis of sodium vanadate solution" Hydrometallurgy 169: 440–446. DOI: doi.org/10.1016/j.hydromet.2017.03.010.
  27. [27] T. Chepushtanova, S. Yulussov, O. Baigenzhenov, A. Khabiyev, Y. Merkibayev, and B. Mishra, (2024) “Review of methods for processing ore vanadium-containing raw materials": DOI: doi.org/10.51301/ejsu.2024.i1.03.
  28. [28] A. Kamradt, S. Walther, J. Schaefer, S. Hedrich, and A. Schippers, (2018) “Mineralogical distribution of base metal sulfides in processing products of black shale-hosted Kupferschiefer-type ore" Minerals Engineering 119: 23–30. DOI: doi.org/10.1016/j.mineng.2017.11.009.
  29. [29] R. Gilligan and A. N. Nikoloski, (2020) “The extraction of vanadium from titanomagnetites and other sources" Minerals Engineering 146: 106106. DOI: doi.org/10.1016/j.mineng.2019.106106.
  30. [30] Z. Bian, Y. Feng, H. Li, and H. Wu, (2021) “Efficient separation of vanadium, titanium, and iron from vanadium-bearing titanomagnetite by pressurized pyrolysis of ammonium chloride-acid leaching-solvent extraction process" Separation and Purification Technology 255: 117169. DOI: doi.org/10.1016/j.seppur.2020.117169.
  31. [31] B. Hu, C. Zhang, M. Yang, Q. Liu, M. Wang, and X. Wang, (2021) “A clean metallurgical process for vanadium precipitation from chromium-containing vanadate solution" Hydrometallurgy 205: 105742. DOI: doi.org/10.1016/j.hydromet.2021.105742.
  32. [32] Y. Guo, H.-Y. Li, J. Cheng, S. Shen, J. Diao, and B. Xie, (2021) “Highly efficient separation and recovery of Si, V, and Cr from V-Cr-bearing reducing slag" Separation and Purification Technology 263: 118396. DOI: doi.org/10.1016/j.seppur.2021.118396.
  33. [33] X. Zhu, W. Li, Q. Zhang, C. Zhang, and L. Chen, (2018) “Separation characteristics of vanadium from leach liquor of red mud by ion exchange with different resins" Hydrometallurgy 176: 42–48. DOI: doi.org/10.1016/j.hydromet.2018.01.009.
  34. [34] R. A. Abdulvaliyev, A. Akcil, S. Gladyshev, E. Tastanov, K. Beisembekova, N. Akhmadiyeva, and H. Deveci, (2015) “Gallium and vanadium extraction from red mud of Turkish alumina refinery plant: Hydrogarnet process" Hydrometallurgy 157: 72–77. DOI: doi.org/10.1016/j.hydromet.2015.07.007.
  35. [35] M. Wang, L. Cai, J. Wen, W. Li, X. Yang, and H. Yang, (2022) “The prospect of recovering vanadium, nickel, and molybdenum from stone coal by using combined beneficiation and metallurgy technology based on mineralogy features" Minerals 13(1): 21. DOI: doi.org/10.3390/ min13010021.
  36. [36] O. Font, X. Querol, R. Juan, R. Casado, C. R. Ruiz, Á. López-Soler, P. Coca, and F. G. Peña, (2007) “Recovery of gallium and vanadium from gasification fly ash" Journal of hazardous materials 139(3): 413–423. DOI: doi.org/10.1016/j.jhazmat.2006.02.041.
  37. [37] H. G. Masoum, S. O. Rastegar, and M. Khamforoush, (2021) “Ultrasound-assisted leaching of vanadium and yttrium from coal ash: optimization, kinetic and thermodynamic study" Chemical Engineering & Technology 44(12): 2249–2256. DOI: doi.org/10.1002/ceat.202100297.
  38. [38] B. Ghanim, J. G. Murnane, L. O’Donoghue, R. Courtney, J. T. Pembroke, and T. F. O’Dwyer, (2020) “Removal of vanadium from aqueous solution using a red mud modified saw dust biochar" Journal of Water Process Engineering 33: 101076. DOI: doi.org/10.1016/j.jwpe.2019.101076.
  39. [39] S. I. Basha, A. Aziz, M. Maslehuddin, S. Ahmad, A. S. Hakeem, and M. M. Rahman, (2020) “Characterization, processing, and application of heavy fuel oil ash, an industrial waste material–A Review" The Chemical Record 20(12): 1568–1595. DOI: doi.org/10.1002/tcr.202000100.
  40. [40] A. Bakkar, M. M. E.-S. Seleman, M. M. Z. Ahmed, S. Harb, S. Goren, and E. Howsawi, (2023) “Recovery of vanadium and nickel from heavy oil fly ash (HOFA): a critical review" RSC advances 13(10): 6327–6345. DOI: doi.org/10.1039/d3ra00289f.
  41. [41] F. Ferella, A. Ognyanova, I. De Michelis, G. Taglieri, and F. Vegliò, (2011) “Extraction of metals from spent hydrotreating catalysts: Physico-mechanical pre-treatments and leaching stage" Journal of hazardous materials 192(1): 176–185. DOI: doi.org/10.1016/j.jhazmat.2011.05.005.
  42. [42] M. Al-Zuhairi, (2014) “Vanadium extraction from residual of fired crude oil in power plants" Iraqi J Mech Mater Eng 14(4): 423–431.
  43. [43] A. Vishnyakov, (2023) “Vanadium and Nickel Recovery from the Products of Heavy Petroleum Feedstock Processing: A Review" Metals 13(6): 1031. DOI: doi.org/10.3390/met13061031.
  44. [44] S. Jamankulova, Z. A. Alybaev, V. Zhuchkov, and L. Boshkayeva, (2018) “The study of oxidizing roasting of vanadium-containing ore with alkali metal salts" Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources 306(3): 37–45. DOI: doi.org/10.31643/2018/6445.15.
  45. [45] Y. Lv, G. Zhao, C. Shen, Y. Chen, Y. Fan, G. Zhang, and C. Yang, (2023) “Extraction of Vanadium from the Spent Residuum Catalysts by Fenton-like Reaction Followed with Alkaline Leaching" Processes 11(7): 2021. DOI: doi.org/10.3390/pr11072021.
  46. [46] Y. Shao, Q. Feng, Y. Chen, L. Ou, G. Zhang, and Y. Lu, (2009) “Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst" Hydrometallurgy 96(1-2): 166–170. DOI: doi.org/10.1016/j.hydromet.2008.10.005.
  47. [47] A. Nikiforova, O. Kozhura, and O. Pasenko, (2016) “Leaching of vanadium by sulfur dioxide from spent catalysts for sulfuric acid production" Hydrometallurgy 164: DOI: doi.org/10.1016/j.hydromet.2016.05.004.
  48. [48] A. Pathak, R. Kothari, M. Vinoba, N. Habibi, and V. V. Tyagi, (2020) “Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions." Journal of environmental management 280: 111789. DOI: doi.org/10. 1016/j.jenvman.2020.111789.
  49. [49] N. Souza, I. Tkach, E. Morgado, and K. Krambrock, (2018) “Vanadium poisoning of FCC catalysts: A quantitative analysis of impregnated and real equilibrium catalysts" Applied Catalysis A-general 560: 206–214. DOI: doi.org/10.1016/j.apcata.2018.05.003.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.