- [1] A. Mannucci, I. Tomashchuk, A. Mathieu, R. Bolot, E. Cicala, S. Lafaye, and C. Roudeix, (2020) “Use of pure vanadium and niobium/copper inserts for laser welding of titanium to stainless steel" Journal of Advanced Joining Processes 1: 100022. DOI: 10.1016/j.jajp.2020.100022.
- [2] I. O. Aimbetova, A. Kuzmin, D. N. Myrkheyeva, E. O. Aimbetova, and L. Kalimoldina, (2023) “An effect of hydrothermal synthesis time on the specific capacitance of vanadium pentoxide" International Journal of Energy for a Clean Environment 24(2): DOI: 10.1615/interjenercleanenv.2022043086.
- [3] B. Khussain, A. Brodskiy, A. Sass, K. Rakhmetova, V. Yaskevich, V. Grigor’eva, A. Ishmukhamedov, A. Shapovalov, I. Shlygina, S. Tungatarova, et al., (2022) “Synthesis of vanadium-containing catalytically active phases for exhaust gas neutralizers of motor vehicles and industrial enterprises" Catalysts 12(8): 842. DOI: doi.org/10.1615/interjenercleanenv.2022043086.
- [4] J. Pisk and D. Agustin, (2022) “Molybdenum, vanadium, and tungsten-based catalysts for sustainable (ep) Oxidation" Molecules 27(18): 6011. DOI: doi.org/10.3390/molecules27186011.
- [5] A. Nasimifar and J. V. Mehrabani, (2022) “A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources" International Journal of Mining and Geo-Engineering 56(4): 361–382. DOI: 10.22059/ijmge.2022.319012.594893.
- [6] G. J. Simandl and S. Paradis, (2022) “Vanadium as a critical material: economic geology with emphasis on market and the main deposit types" Applied Earth Science 131(4): 218–236. DOI: doi.org/10.1080/25726838.2022.2102883.
- [7] L. Wang, Y. Zhang, T. Liu, J. Huang, N. Xue, and Q. Zheng, (2020) “Separation of iron impurity during vanadium acid leaching from black shale by yavapaiiteprecipitating method" Hydrometallurgy 191: 105191. DOI: doi.org/10.1016/j.hydromet.2019.105191.
- [8] J. Yu, N. Hu, H. Xiao, P. Gao, and Y. Sun, (2021) “Reduction behaviors of vanadium-titanium magnetite with H2 via a fluidized bed" Powder Technology 385: 83–91. DOI: doi.org/10.1016/j.powtec.2021.02.038.
- [9] E. Romanovskaia, V. Romanovski, W. Kwapinski, and I. Kurilo, (2021) “Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach" Hydrometallurgy 200: 105568. DOI: doi.org/10.1016/j.hydromet.2021.105568.
- [10] W. Li, X. Yan, Z. Niu, and X. Zhu, (2021) “Selective recovery of vanadium from red mud by leaching with using oxalic acid and sodium sulfite" Journal of Environmental Chemical Engineering 9(4): 105669. DOI: doi.org/10.1016/j.jece.2021.105669.
- [11] I. Sugiyama and A. Williams-Jones, (2018) “An approach to determining nickel, vanadium and other metal concentrations in crude oil" Analytica chimica acta 1002: 18–25. DOI: doi.org/10.1016/j.aca.2017.11.040.
- [12] J.-y. Xiang, W. Xin, G.-s. Pei, Q.-y. Huang, and X.-w. LÜ, (2020) “Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching" Transactions of Nonferrous Metals Society of China 30(11): 3114–3123. DOI: doi.org/10.1016/s1003-6326(20)65447-4.
- [13] B. Chen, S. Bao, Y. Zhang, and S. Li, (2020) “A highefficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound" Separation and Purification Technology 240: 116624. DOI: doi.org/10.1016/j.seppur.2020.116624.
- [14] H. Peng, (2019) “A literature review on leaching and recovery of vanadium" Journal of Environmental Chemical Engineering 7(5): 103313. DOI: doi.org/10.1016/j.jece.2019.103313.
- [15] S. Liu, E. Ding, P. Ning, G. Xie, and N. Yang, (2021) “Vanadium extraction from roasted vanadium-bearing steel slag via pressure acid leaching" Journal of Environmental Chemical Engineering 9(3): 105195. DOI: doi.org/10.1016/j.jece.2021.105195.
- [16] H.-Y. Li, K. Wang, W.-H. Hua, Z. Yang, W. Zhou, and B. Xie, (2016) “Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate" Hydrometallurgy 160: 18–25. DOI: doi.org/10.1016/j.hydromet.2015.11.014.
- [17] O. Baigenzhenov, S. Yulussov, A. Khabiyev, M. Sydykanov, and M. Akbarov, (2019) “Investigation of the leaching process of rare-earth metals from the black shale ores of Greater Karatau" Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources 310(3): 76–80. DOI: doi.org/10.31643/2019/6445.31.
- [18] H. Mahandra, R. Singh, and B. Gupta, (2020) “Recovery of vanadium (V) from synthetic and real leach solutions of spent catalyst by solvent extraction using Cyphos IL 104" Hydrometallurgy 196: 105405. DOI: doi.org/10.1016/j.hydromet.2020.105405.
- [19] H. Wang, Y. Feng, H. Li, H. Li, and H. Wu, (2020) “Recovery of vanadium from acid leaching solutions of spent oil hydrotreating catalyst using solvent extraction with D2EHPA (P204)" Hydrometallurgy 195: 105404. DOI: doi.org/10.1016/j.hydromet.2020.105404.
- [20] A. R. Gollakota, V. Volli, and C. M. Shu, (2019) “Progressive utilisation prospects of coal fly ash: A review" Science of the Total Environment 672: 951–989. DOI: doi.org/10.1016/j.scitotenv.2019.03.337.
- [21] X. Zeng, F. Wang, H. Zhang, L. Cui, J. Yu, and G. Xu, (2015) “Extraction of vanadium from stone coal by roasting in a fluidized bed reactor" Fuel 142: 180–188. DOI: doi.org/10.1016/j.fuel.2014.10.068.
- [22] Y. Ma, X. Wang, S. Stopic, M. Wang, D. Kremer, H. Wotruba, and B. Friedrich, (2018) “Preparation of vanadium oxides from a vanadium (IV) strip liquor extracted from vanadium-bearing shale using an eco-friendly method" Metals 8(12): 994. DOI: doi.org/10.3390/met8120994.
- [23] A. Khabiyev, O. Baigenzhenov, S. Yulussov, M. Akbarov, and M. Sydykanov, (2020) “Study of leaching processes of sintered black shale ore" Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources 315(4): 5–10. DOI: doi.org/10.31643/2020/6445.31.
- [24] X. Hu, Y. Yue, and X. Peng, (2018) “Release kinetics of vanadium from vanadium (III, IV and V) oxides: Effect of pH, temperature and oxide dose" Journal of Environmental Sciences 67: 96–103. DOI: doi.org/10.1016/j.jes.2017.08.006.
- [25] P. Hu, Y. Zhang, T. Liu, J. Huang, Y. Yuan, and N. Xue, (2018) “Source separation of vanadium over iron from roasted vanadium-bearing shale during acid leaching via ferric fluoride surface coating" Journal of cleaner production 181: 399–407. DOI: doi.org/10.1016/j.jclepro.2018.01.226.
- [26] B. Pan, W. Jin, B. Liu, S. Zheng, S. Wang, H. Du, and Y. Zhang, (2017) “Cleaner production of vanadium oxides by cation-exchange membrane-assisted electrolysis of sodium vanadate solution" Hydrometallurgy 169: 440–446. DOI: doi.org/10.1016/j.hydromet.2017.03.010.
- [27] T. Chepushtanova, S. Yulussov, O. Baigenzhenov, A. Khabiyev, Y. Merkibayev, and B. Mishra, (2024) “Review of methods for processing ore vanadium-containing raw materials": DOI: doi.org/10.51301/ejsu.2024.i1.03.
- [28] A. Kamradt, S. Walther, J. Schaefer, S. Hedrich, and A. Schippers, (2018) “Mineralogical distribution of base metal sulfides in processing products of black shale-hosted Kupferschiefer-type ore" Minerals Engineering 119: 23–30. DOI: doi.org/10.1016/j.mineng.2017.11.009.
- [29] R. Gilligan and A. N. Nikoloski, (2020) “The extraction of vanadium from titanomagnetites and other sources" Minerals Engineering 146: 106106. DOI: doi.org/10.1016/j.mineng.2019.106106.
- [30] Z. Bian, Y. Feng, H. Li, and H. Wu, (2021) “Efficient separation of vanadium, titanium, and iron from vanadium-bearing titanomagnetite by pressurized pyrolysis of ammonium chloride-acid leaching-solvent extraction process" Separation and Purification Technology 255: 117169. DOI: doi.org/10.1016/j.seppur.2020.117169.
- [31] B. Hu, C. Zhang, M. Yang, Q. Liu, M. Wang, and X. Wang, (2021) “A clean metallurgical process for vanadium precipitation from chromium-containing vanadate solution" Hydrometallurgy 205: 105742. DOI: doi.org/10.1016/j.hydromet.2021.105742.
- [32] Y. Guo, H.-Y. Li, J. Cheng, S. Shen, J. Diao, and B. Xie, (2021) “Highly efficient separation and recovery of Si, V, and Cr from V-Cr-bearing reducing slag" Separation and Purification Technology 263: 118396. DOI: doi.org/10.1016/j.seppur.2021.118396.
- [33] X. Zhu, W. Li, Q. Zhang, C. Zhang, and L. Chen, (2018) “Separation characteristics of vanadium from leach liquor of red mud by ion exchange with different resins" Hydrometallurgy 176: 42–48. DOI: doi.org/10.1016/j.hydromet.2018.01.009.
- [34] R. A. Abdulvaliyev, A. Akcil, S. Gladyshev, E. Tastanov, K. Beisembekova, N. Akhmadiyeva, and H. Deveci, (2015) “Gallium and vanadium extraction from red mud of Turkish alumina refinery plant: Hydrogarnet process" Hydrometallurgy 157: 72–77. DOI: doi.org/10.1016/j.hydromet.2015.07.007.
- [35] M. Wang, L. Cai, J. Wen, W. Li, X. Yang, and H. Yang, (2022) “The prospect of recovering vanadium, nickel, and molybdenum from stone coal by using combined beneficiation and metallurgy technology based on mineralogy features" Minerals 13(1): 21. DOI: doi.org/10.3390/ min13010021.
- [36] O. Font, X. Querol, R. Juan, R. Casado, C. R. Ruiz, Á. López-Soler, P. Coca, and F. G. Peña, (2007) “Recovery of gallium and vanadium from gasification fly ash" Journal of hazardous materials 139(3): 413–423. DOI: doi.org/10.1016/j.jhazmat.2006.02.041.
- [37] H. G. Masoum, S. O. Rastegar, and M. Khamforoush, (2021) “Ultrasound-assisted leaching of vanadium and yttrium from coal ash: optimization, kinetic and thermodynamic study" Chemical Engineering & Technology 44(12): 2249–2256. DOI: doi.org/10.1002/ceat.202100297.
- [38] B. Ghanim, J. G. Murnane, L. O’Donoghue, R. Courtney, J. T. Pembroke, and T. F. O’Dwyer, (2020) “Removal of vanadium from aqueous solution using a red mud modified saw dust biochar" Journal of Water Process Engineering 33: 101076. DOI: doi.org/10.1016/j.jwpe.2019.101076.
- [39] S. I. Basha, A. Aziz, M. Maslehuddin, S. Ahmad, A. S. Hakeem, and M. M. Rahman, (2020) “Characterization, processing, and application of heavy fuel oil ash, an industrial waste material–A Review" The Chemical Record 20(12): 1568–1595. DOI: doi.org/10.1002/tcr.202000100.
- [40] A. Bakkar, M. M. E.-S. Seleman, M. M. Z. Ahmed, S. Harb, S. Goren, and E. Howsawi, (2023) “Recovery of vanadium and nickel from heavy oil fly ash (HOFA): a critical review" RSC advances 13(10): 6327–6345. DOI: doi.org/10.1039/d3ra00289f.
- [41] F. Ferella, A. Ognyanova, I. De Michelis, G. Taglieri, and F. Vegliò, (2011) “Extraction of metals from spent hydrotreating catalysts: Physico-mechanical pre-treatments and leaching stage" Journal of hazardous materials 192(1): 176–185. DOI: doi.org/10.1016/j.jhazmat.2011.05.005.
- [42] M. Al-Zuhairi, (2014) “Vanadium extraction from residual of fired crude oil in power plants" Iraqi J Mech Mater Eng 14(4): 423–431.
- [43] A. Vishnyakov, (2023) “Vanadium and Nickel Recovery from the Products of Heavy Petroleum Feedstock Processing: A Review" Metals 13(6): 1031. DOI: doi.org/10.3390/met13061031.
- [44] S. Jamankulova, Z. A. Alybaev, V. Zhuchkov, and L. Boshkayeva, (2018) “The study of oxidizing roasting of vanadium-containing ore with alkali metal salts" Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources 306(3): 37–45. DOI: doi.org/10.31643/2018/6445.15.
- [45] Y. Lv, G. Zhao, C. Shen, Y. Chen, Y. Fan, G. Zhang, and C. Yang, (2023) “Extraction of Vanadium from the Spent Residuum Catalysts by Fenton-like Reaction Followed with Alkaline Leaching" Processes 11(7): 2021. DOI: doi.org/10.3390/pr11072021.
- [46] Y. Shao, Q. Feng, Y. Chen, L. Ou, G. Zhang, and Y. Lu, (2009) “Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst" Hydrometallurgy 96(1-2): 166–170. DOI: doi.org/10.1016/j.hydromet.2008.10.005.
- [47] A. Nikiforova, O. Kozhura, and O. Pasenko, (2016) “Leaching of vanadium by sulfur dioxide from spent catalysts for sulfuric acid production" Hydrometallurgy 164: DOI: doi.org/10.1016/j.hydromet.2016.05.004.
- [48] A. Pathak, R. Kothari, M. Vinoba, N. Habibi, and V. V. Tyagi, (2020) “Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions." Journal of environmental management 280: 111789. DOI: doi.org/10. 1016/j.jenvman.2020.111789.
- [49] N. Souza, I. Tkach, E. Morgado, and K. Krambrock, (2018) “Vanadium poisoning of FCC catalysts: A quantitative analysis of impregnated and real equilibrium catalysts" Applied Catalysis A-general 560: 206–214. DOI: doi.org/10.1016/j.apcata.2018.05.003.