Li Li1, Zhiquan Wu2, Haiyu Zhang3, Xin Zhang4, Yingying Li4, Lin Zhu5, and Huihui Song3This email address is being protected from spambots. You need JavaScript enabled to view it.
1School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
2SPIC Yunnan International Power Investment Co., Ltd, Kunming, 650000, China
3School of New Energy, Harbin Institute of Technology (Weihai), Weihai 264200, China
4Institute of New Energy Technology, State Power Investment Corporation Research Institute, Co., Ltd, Beijing, China
5Yunnan Power Investment Green Energy Technology Co., Ltd, SPIC Yunnan International Power Investment Co., Ltd. Kunming, 650000, China
- [1] M. Mesbah, K. Sayed, A. Ahmed, M. Aref, M. Gaafar, M. Mossa, M. Almalki, and T. A. H. Alghamdi, (2024) “A Distributed Architecture of Parallel Buck-Boost Converters and Cascaded Control of DC Microgrids-Real Time Implementation" IEEE Access 12: 47483–47493. DOI: 10.1109/ACCESS.2024.3382569.
- [2] Q. Yuan, Y. Wang, X. Liu, and Z. Liu, (2024) “Distributed Privacy-Preserving Secondary Control for DC Microgrids via State Decomposition" IEEE Transactions on Sustainable Energy 15: 726–734. DOI: 10.1109/TSTE.2023.3301594.
- [3] J. Hu, Y. Shan, K. Cheng, and S. Islam, (2022) “Overview of Power Converter Control in Microgrids Challenges, Advances, and Future Trends" IEEE Transactions on Power Electronics 37: 9907–9922. DOI: 10.1109/TPEL.2022.3159828.
- [4] K. K. Mohd Alam and S. Bae, (2024) “Virtual-inertiabased power management scheme in fuel cell-batterysupercapacitor-based DC microgrid" Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 46: 1944–1960. DOI: 10.1080/15567036.2024.2302951.
- [5] O. Babayomi, Z. Zhang, Z. Li, and K.-B. Park, (2024) “Bidirectional DC-DC converters for distributed energy resources: Robust predictive control with structurallyadaptive extended state observers" International Journal of Electrical Power & Energy Systems 158: 109913. DOI: 10.1016/j.ijepes.2024.109913.
- [6] Y. Saeidinia, M. Arabshahi, M. Aminirad, and M. Shafie-khah, (2024) “Enhancing DC microgrid performance through machine learning-optimized droop control" IET Generation, Transmission & Distribution 18: 1919–1934. DOI: 10.1049/gtd2.13169.
- [7] Y. Du, P. Chong, X. Wang, X. Yang, and S. Yang, (2024) “Adaptive RoCoX droop control strategy for AC/DC hybrid microgrid" International Journal of Electrical Power & Energy Systems 157: 109860. DOI: 10.1016/j.ijepes.2024.109860.
- [8] N. Zhi, X. Ming, L. Zhang, H. Zhang, and W. Zhang, (2022) “Virtual DC machine control strategy for bidirectional DC/DC converter simulating speed regulation characteristics of DC machine" Electric Power Automation Equipment 42: 115–121. DOI: 10.16081/j.epae.202209015.
- [9] M. Wang, F. Tang, Y. Zhao, X. Wu, N. Jingkai, and J. Jiang, (2020) “Parallel Coordinated Control Method of Virtual DC Machines" Power System Technology 44: 3875–3885. DOI: 10.13335/j.1000-3673.pst.2020.0256.
- [10] S. Samanta, J. Mishra, and B. Roy, (2018) “Virtual DC Machine: An Inertia Emulation and Control Technique for a Bidirectional DC-DC Converter in a DC Microgrid" IET Electric Power Applications 12: 874–884. DOI: 10.1049/iet-epa.2017.0770.
- [11] J. Cui and J. Fang, (2022) “Parameters analysis and virtual inertia adaptive control of virtual DC motor technique" Journal of Power Supply 20: 192–202. DOI: 10.13234/j.issn.2095-2805.2022.6.192.
- [12] N. Zhi, X. Ming, Y. Ding, L. Du, and H. Zhang, (2022) “Power-Loop-Free Virtual DC Machine Control With Differential Compensation" IEEE Transactions on Industry Applications 58: 413–422. DOI: 10.1109/TIA.2021.3119512.
- [13] C. Zhang, Y. Bao, X. Meng, J. Wang, and Z. Kan, (2023) “Adaptive virtual DC machine control for a DC microgrid energy storage DC/DC converter" Power System Protection and Control 51: 12–20. DOI: 10.19783/j.cnki.pspc.220447.
- [14] C. Jian, L. Zhipeng, S. Wanxing, W. Ming, W. Jianhua, Z. Wei, and F. Shaosheng, (2019) “A new control technology based on virtual DC motor" Proceedings of the CSEE 39: 3029–3038. DOI: 10.13334/j.0258-8013.pcsee.180782.
- [15] M. Shi, X. Chen, J. Zhou, Y. Chen, J. Wen, and H. He, (2020) “Distributed Optimal Control of Energy Storages in a DC Microgrid With Communication Delay" IEEE Transactions on Smart Grid 11: 2033–2042. DOI: 10.1109/TSG.2019.2946173.
- [16] D. Liao, F. Gao, D. Rogers, W. Huang, D. Liu, and H. Tang, (2024) “Distributed Secondary Control Based on Dynamic Diffusion Algorithm for Current Sharing and Average Voltage Regulation in DC Microgrids" Journal of Modern Power Systems and Clean Energy 12: 597–607. DOI: 10.35833/MPCE.2022.000668.
- [17] L. Xie, H. Wen, Y. Zhang, C. Wei, Y. Chen, and K. Zhu, (2022) “Coordinated power control strategy for parallel system with multiple virtual DC machines" Automation of Electric Power Systems 46: 134–143. DOI: 10.7500/AEPS20220104006.
- [18] R. Shi, X. Zhang, S. Liu, H. Lixiang, S. Liao, and Z. Hu, (2023) “Co-control strategy of distributed battery energy storage system based on SOC equalization" Acta Energiae Solaris Sinica 44: 546–552. DOI: 10.19912/j.0254-0096.tynxb.2022-0799.
- [19] Y. Zeng, Z. Qinjin, Y. Liu, Z. Xuzhou, and H. Guo, (2022) “Hierarchical Cooperative Control Strategy for Battery Storage System in Islanded DC Microgrid" IEEE Transactions on Power Systems 37: 4028–4039. DOI: 10.1109/TPWRS.2021.3131591.
- [20] N. Zhi, K. Ding, L. Du, and H. Zhang, (2020) “An SOC-based Virtual DC Machine Control for Distributed Storage Systems in DC Microgrids" IEEE Transactions on Energy Conversion 35: 1411–1420. DOI: 10.1109/TEC.2020.2975033.
- [21] M. Xu and Q. Zhao, (2024) “Virtual DC Motor SOC Equalization Control" Journal of Electrical Engineering 41: 2657–2665.
- [22] F. Marcelino, H. Sathler, W. Silva, T. De Oliveira, and P. Donoso-Garcia. “A comparative study of Droop Compensation Functions for State-of-Charge based adaptive droop control for Distributed Energy Storage Systems”. In: 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). 2017, 1–8. DOI: 10.1109/PEDG.2017.7972492.
- [23] P. Li, C. Zhang, R. Yuan, Z. Kan, and Y. Chen, (2017) “Load Current Sharing Method of Distributed Energy Storage Systems by Improved SOC Drooping Control" Proceedings of the CSEE 37: 3746–3754. DOI: 10.13334/j.0258-8013.pcsee.161527.
- [24] Y. Mi, J. Guo, Y. Fu, C. Wang, and P. Wang, (2023) “Accurate Power Allocation of Multienergy Storage Island DC Microgrid Based on Virtual Power Rating" IEEE Transactions on Power Electronics 38: 261–270. DOI: 10.1109/TPEL.2022.3201373.
- [25] W. Ma, L. Wang, Y. Wang, R. Wan, X. Wang, and J. Wang, (2024) “Hybrid energy storage power distribution and adaptive virtual inertia control considering SOC" Power System Protection and Control 52: 83–93. DOI: 10.19783/j.cnki.pspc.230968.
- [26] Z. Lan, C. Tu, and F. Jiang, (2019) “The flexible interconnection strategy between DC microgrid and AC grid based on virtual electric machinery technology" Transactions of China Electrotechnical Society 34: 1739–1749. DOI: 10.19595/j.cnki.1000-6753.tces.180594.
- [27] F. Al-Ismail, (2024) “A Critical Review on DC Microgrids Voltage Control and Power Management" IEEE Access 12: 30345–30361. DOI: 10.1109/ACCESS.2024.3369609.
- [28] V. Sirohi, T. S. Saggu, J. Kumar, and B. Gill, (2024) “Implementation of a Novel Multilevel Inverter Topology With Minimal Components—An Experimental Study" IEEE Canadian Journal of Electrical and Computer Engineering 47: 7–14. DOI: 10.1109/ICJECE.2023.3340326.
- [29] H. Moradian and S. Kia, (2019) “On Robustness Analysis of a Dynamic Average Consensus Algorithm to Communication Delay" IEEE Transactions on Control of Network Systems 6: 633–641. DOI: 10.1109/TCNS.2018.2863568.
- [30] Y. Zeng, Q. Zhang, Y. Liu, X. Zhuang, X. Lv, and H. Wang, (2022) “An Improved Distributed Secondary Control Strategy for Battery Storage System in DC Shipboard Microgrid" IEEE Transactions on Industry Applications 58: 4062–4075. DOI: 10.1109/TIA.2022.3153755.
- [31] Q. Zhang, Y. Zeng, Y. Liu, X. Zhuang, H. Zhang, W. Hu, and H. Guo, (2022) “An Improved Distributed Cooperative Control Strategy for Multiple Energy Storages Parallel in Islanded DC Microgrid" IEEE Journal of Emerging and Selected Topics in Power Electronics 10: 455–468. DOI: 10.1109/JESTPE.2021.3072701.
- [32] V. Nasirian, A. Davoudi, F. Lewis, and J. Guerrero, (2014) “Distributed Adaptive Droop Control for DC Distribution Systems" IEEE Transactions on Energy Conversion 29: 944–956. DOI: 10.1109/TEC.2014.2350458.
- [33] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, (2014) “State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications" IEEE Transactions on Industrial Electronics 61: 2804–2815. DOI: 10.1109/TIE.2013.2279374.