- [1] A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. K. Al-Ali, and R. Jain, (2021) “Recent advances in the Internet-of-Medical-Things (IoMT) systems security" IEEE Internet of Things Journal 8(11): 8707–8718. DOI: 10.1109/jiot.2020.3045653.
- [2] O. Dalmaz, M. Yurt, and T. Çukur, (2022) “ResViT: Residual vision transformers for multimodal medical image synthesis" IEEE Transactions on Medical Imaging 41(10): 2598–2614. DOI: 10.1109/tmi.2022.3167808.
- [3] A. Jog, A. Carass, S. Roy, D. L. Pham, and J. L. Prince, (2015) “MR image synthesis by contrast learning on neighborhood ensembles" Medical Image Analysis 24(1): 63–76. DOI: 10.1016/j.media.2015.05.002.
- [4] Y. Huang, L. Shao, and A. F. Frangi, (2018) “Crossmodality image synthesis via weakly coupled and geometry co-regularized joint dictionary learning" IEEE Transactions on Medical Imaging 37(3): 815–827. DOI: 10.1109/tmi.2017.2781192.
- [5] P. Li, J. Gao, J. Zhang, S. Jin, and Z. Chen, (2023) “Deep reinforcement clustering" IEEE Transactions on Multimedia 25: 8183–8193. DOI: 10.1109/tmm.2022.3233249.
- [6] J. Gao, M. Liu, P. Li, J. Zhang, and Z. Chen, (2023) “Deep multiview adaptive clustering with semantic invariance" IEEE Transactions on Neural Networks and Learning Systems: 1–14. DOI: 10.1109/tnnls.2023.3265699.
- [7] J. Gao, P. Li, A. A. Laghari, G. Srivastava, T. R. Gadekallu, S. Abbas, and J. Zhang, (2024) “Incomplete multiview clustering via semidiscrete optimal transport for multimedia data mining in IoT" ACM Transactions on Multimedia Computing, Communications and Applications 20(6): 158:1–158:20. DOI: 10.1145/3625548.
- [8] P. Li, A. A. Laghari, M. Rashid, J. Gao, T. R. Gadekallu, A. R. Javed, and S. Yin, (2023) “A Deep multimodal adversarial cycle-consistent network for smart enterprise system" IEEE Transactions on Industrial Informatics 19(1): 693–702. DOI: 10.1109/tii.2022.3197201.
- [9] P. Subramaniam, T. Kossen, K. Ritter, A. Hennemuth, K. Hildebrand, A. Hilbert, J. Sobesky, M. Livne, I. Galinovic, A. A. Khalil, J. B. Fiebach, D. Frey, and V. I. Madai, (2022) “Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks" Medical Image Analysis 78: 102396. DOI: 10.1016/j.media.2022.102396.
- [10] W. Li, J. Li, J. Polson, Z. Wang, W. Speier, and C. W. Arnold, (2022) “High resolution histopathology image generation and segmentation through adversarial training" Medical Image Analysis 75: 102251. DOI: 10.1016/j.media.2021.102251.
- [11] M. Hamghalam and A. L. Simpson, (2024) “Medical image synthesis via conditional GANs: Application to segmenting brain tumours" Computers in Biology and Medicine 170: 107982. DOI: 10.1016/j.compbiomed.2024.107982.
- [12] Y. Luo, L. Zhou, B. Zhan, F. Wang, J. Zhou, Y. Wang, and D. Shen, (2022) “Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis" Medical Image Analysis 77: 102335. DOI: 10.1016/j.media.2021.102335.
- [13] S. Hu, B. Lei, S. Wang, Y. Wang, Z. Feng, and Y. Shen, (2022) “Bidirectional mapping generative adversarial networks for brain MR to PET synthesis" IEEE Transactions on Medical Imaging 41(1): 145–157. DOI: 10.1109/tmi.2021.3107013.
- [14] L. Han, Y. Lyu, C. Peng, and S. K. Zhou, (2022) “GANbased disentanglement learning for chest X-ray rib suppression" Medical Image Analysis 77: 102369. DOI: 10.1016/j.media.2022.102369.
- [15] L. Shen, L. Yu, W. Zhao, J. M. Pauly, and L. Xing, (2022) “Novel-view X-ray projection synthesis through geometry-integrated deep learning" Medical Image Analysis 77: 102372. DOI: 10.1016/j.media.2022.102372.
- [16] Y. Heng, M. Yinghua, F. G. Khan, A. Khan, and Z. Hui, (2024) “HLSNC-GAN: Medical image synthesis using hinge loss and switchable normalization in CycleGAN" IEEE Access 12: 55448–55464. DOI: 10.1109/access.2024.3390245.
- [17] X. Lu, X. Liang, W. Liu, X. Miao, and X. Guan, (2024) “ReeGAN: MRI image edge-preserving synthesis based on GANs trained with misaligned data" Medical and Biological Engineering and Computing 62: 1851–1868. DOI: 10.1007/s11517-024-03035-w.
- [18] K. Wei, W. Kong, L. Liu, J. Wang, B. Li, B. Zhao, Z. Li, J. Zhu, and G. Yu, (2024) “CT synthesis from MR images using frequency attention conditional generative adversarial network" Computers in Biology and Medicine 170: 107983. DOI: 10.1016/j.compbiomed.2024.107983.
- [19] X. Li, S. Zhang, J. Hu, L. Cao, X. Hong, X. Mao, F. Huang, Y. Wu, and R. Ji. “Image-to-image translation via hierarchical style disentanglement”. In: IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2021, 8639– 8648. DOI: 10.1109/cvpr46437.2021.00853.
- [20] J. Cao, L. Hou, M. Yang, R. He, and Z. Sun. “ReMix: Towards image-to-image translation with limited data”. In: IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2021, 15018–15027. DOI: 10.1109/cvpr46437.2021.01477.
- [21] J. Liang, H. Zeng, and L. Zhang. “High-resolution photorealistic image translation in real-time: A Laplacian pyramid translation network”. In: IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2021, 9392–9400. DOI: 10.1109/cvpr46437.2021.00927.
- [22] F. Zhan, Y. Yu, K. Cui, G. Zhang, S. Lu, J. Pan, C. Zhang, F. Ma, X. Xie, and C. Miao. “Unbalanced feature transport for exemplar-based image translation”. In: IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2021, 15028–15038. DOI: 10.1109/cvpr46437.2021.01478.
- [23] X. Zhou, B. Zhang, T. Zhang, P. Zhang, J. Bao, D. Chen, Z. Zhang, and F. Wen. “CoCosNet v2: Fullresolution correspondence learning for image translation”. In: IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2021, 11465–11475. DOI: 10.1109/cvpr46437.2021.01130.
- [24] G. Liu, Q. Zhou, X. Xie, and Q. Yu, (2023) “Dual conditional GAN based on external attention for semantic image synthesis" Connection Science 35(1): DOI: 10.1080/09540091.2023.2259120.
- [25] B. Yang, X. Xiang, W. Kong, J. Zhang, and Y. Peng, (2024) “DMF-GAN: Deep multimodal fusion generative adversarial networks for text-to-image synthesis" IEEE Transactions on Multimedia 26: 6956–6967. DOI: 10.1109/tmm.2024.3358086.
- [26] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks”. In: International Conference on Learning Representations. OpenReview.net, 2016.
- [27] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. “Improved training of Wasserstein GANs”. In: Annual Conference on Neural Information Processing Systems. 2017, 5767–5777.
- [28] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. “Least squares generative adversarial networks”. In: IEEE International Conference on Computer Vision. IEEE Computer Society, 2017, 2813–2821. DOI: 10.1109/iccv.2017.304.
- [29] J. Yang, A. Kannan, D. Batra, and D. Parikh. “LRGAN: Layered recursive generative adversarial networks for image generation”. In: International Conference on Learning Representations. OpenReview.net, 2017.
- [30] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of GANs for improved quality, stability, and variation”. In: International Conference on Learning Representations. OpenReview.net, 2018.
- [31] H. Zhang, I. J. Goodfellow, D. N. Metaxas, and A. Odena. “Self-attention generative adversarial networks”. In: International Conference on Machine Learning. PMLR, 2019, 7354–7363.
- [32] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. “Imageto-image translation with conditional adversarial networks”. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017, 5967–5976. DOI: 10.1109/cvpr.2017.632.
- [33] J. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired image-to-image translation using cycle-consistent adversarial networks”. In: IEEE International Conference on Computer Vision. IEEE Computer Society, 2017, 2242–2251. DOI: 10.1109/iccv.2017.244.
- [34] J. Kim, M. Kim, H. Kang, and K. Lee. “U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-toimage translation”. In: International Conference on Learning Representations. OpenReview.net, 2020.
- [35] T. Zhou, H. Fu, G. Chen, J. Shen, and L. Shao, (2020) “Hi-Net: Hybrid-fusion network for multi-modal MR image synthesis" IEEE Transactions on Medical Imaging 39(9): 2772–2781. DOI: 10.1109/tmi.2020.2975344.
- [36] J. Gao, W. Zhao, P. Li, W. Huang, and Z. Chen, (2022) “LEGAN: A light and effective generative adversarial network for medical image synthesis" Computers in Biology and Medicine 148: 105878. DOI: 10.1016/j.compbiomed.2022.105878.