- [1] H.-G. NiandJ.-Z. Wang, (2000) “Prediction of compres sive strength of concrete by neural networks" Cement and Concrete Research 30: 1245–1250. DOI: 10.1016/S0008-8846(00)00345-8.
- [2] A. Ahmed, (2013) “ACI Concrete Terminology" ACI CT-13:
- [3] J.-C. Morel, A. Pkla, and P. Walker, (2007) “Compres sive strength testing of compressed earth blocks" Con struction and Building materials 21: 303–309. DOI: 10.1016/j.conbuildmat.2005.08.021.
- [4] A. T. Amlashi, E. M. Golafshani, S. A. Ebrahimi, and A. Behnood, (2023) “Estimation of the compres sive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches" European Journal of Environmental and Civil En gineering 27: 961–983. DOI: 10.1080/19648189.2022.2068657.
- [5] I. Mironyuk, T. Tatarchuk, N. Paliychuk, I. Heviuk, A. Horpynko, O. Yarema, and I. Mykytyn, (2021) “Ef fect of surface-modified fly ash on compressive strength of cement mortar" Materials Today: Proceedings 35: 534–537. DOI: 10.1016/j.matpr.2019.10.016.
- [6] P. Turgut and F. Demir, (2019) “The influence of dis posed fly ash on Ca2+ leaching and physico-mechanical properties of mortars" Journal of Cleaner Production 226: 270–281. DOI: 10.1016/j.jclepro.2019.04.105.
- [7] Y.-F. Yang, G.-S. Gai, Z.-F. Cai, and Q.-R. Chen, (2006) “Surface modification of purified fly ash and application in polymer" Journal of Hazardous Materials 133: 276282. DOI: 10.1016/j.jhazmat.2005.10.028.
- [8] Y. Dong, L. Pei, J. Fu, Y. Yang, T. Liu, H. Liang, and H. Yang, (2022) “Investigating the mechanical proper ties and durability of metakaolin-incorporated mortar by different curing methods" Materials 15: 2035. DOI: 10.3390/ma15062035.
- [9] M.Z.Lakhssassi, S. Alehyen, M. E. Alouani, and M. Taibi, (2019) “The effect of aggressive environments on the properties of a low calcium fly ash based geopolymer and the ordinary Portland cement pastes" Materials Today: Proceedings 13: 1169–1177. DOI: 10.1016/j.matpr.2019.04.085.
- [10] C. K. Goh, S. E. Valavan, T. K. Low, and L. H. Tang, (2016) “Effects of different surface modification and con tents on municipal solid waste incineration fly ash/epoxy composites" Waste management 58: 309–315. DOI: 10.1016/j.wasman.2016.05.027.
- [11] F. Bellmann and J. Stark, (2009) “Activation of blast furnace slag by a new method" Cement and Concrete Research 39: 644–650. DOI: 10.1016/j.cemconres.2009.05.012.
- [12] A.K.Jain, J. Mao, and K. M.Mohiuddin, (1996) “Arti f icial neural networks: A tutorial" Computer 29: 31–44. DOI: 10.1109/2.485891.
- [13] E. M. Golafshani, A. Behnood, and M. Arashpour, (2020) “Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer" Construction and Building Materials 232: 117266. DOI: 10.1016/j.conbuildmat.2019.117266.
- [14] M.R.Parvaiz, S. Mohanty, S. K. Nayak, and P. A. Ma hanwar, (2011) “Effect of surface modification of fly ash on the mechanical, thermal, electrical and morphological properties of polyetheretherketone composites" Materi als Science and Engineering: A 528: 4277–4286. DOI: 10.1016/j.msea.2011.01.026.
- [15] F. Khademi, S. M. Jamal, N. Deshpande, and S. Londhe, (2016) “Predicting strength of recycled aggre gate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regres sion" International Journal of Sustainable Built En vironment 5: 355–369. DOI: 10.1016/j.ijsbe.2016.09.003.
- [16] Y. Aggarwal and P. Aggarwal, (2011) “Prediction of compressive strength of SCC containing bottom ash using artificial neural networks" International Journal of Mathematical and Computational Sciences 5: 762 767. DOI: 10.5281/zenodo.1329661.
- [17] P.-C. Aıtcin, (2000) “Cements of yesterday and today: Concrete of tomorrow" Cement and Concrete research 30: 1349–1359. DOI: 10.1016/S0008-8846(00)00365-3.
- [18] M.Moranville-Regourd. Cements made from blastfur nace slag. Elsevier, 1998, 637–678. DOI: 10.1016/B978-075066256-7/50023-0.
- [19] M.Moranville-Regourd. Cements made from blastfur nace slag. Elsevier, 1998, 637–678. DOI: 10.1016/B978-075066256-7/50023-0.
- [20] S. Joseph and Ö. Cizer, (2022) “Hydration of hybrid cements at low temperatures: A study on portland cement blast furnace slag—Na2SO4" Materials 15: 1914. DOI: 10.3390/ma15051914.
- [21] I. B. Topcu and M. Sarıdemir, (2008) “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic" Computa tional Materials Science 41: 305–311. DOI: 10.1016/j.commatsci.2007.04.009.
- [22] S.-C. Lee, (2003) “Prediction of concrete strength using artificial neural networks" Engineering structures 25: 849–857. DOI: 10.1016/S0141-0296(03)00004-X.
- [23] H. Naderpour, A. H. Rafiean, and P. Fakharian, (2018) “Compressive strength prediction of environmen tally friendly concrete using artificial neural networks" Journal of building engineering 16: 213–219. DOI: 10.1016/j.jobe.2018.01.007.
- [24] A. T. A. Dantas, M. B. Leite, and K. de Jesus Naga hama, (2013) “Prediction of compressive strength of con crete containing construction and demolition waste using artificial neural networks" Construction and Building Materials 38: 717–722. DOI: 10.1016/j.conbuildmat.2012.09.026.
- [25] A. Khajeh, S. A. Ebrahimi, H. MolaAbasi, R. J. Chenari, and M. Payan, (2021) “Effect of EPS beads in lightening a typical zeolite and cement-treated sand" Bul letin of Engineering Geology and the Environment 80: 8615–8632. DOI: 10.1007/s10064-021-02458-1.
- [26] P. G. Asteris, M. Apostolopoulou, A. D. Skentou, and A. Moropoulou, (2019) “Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars" Computers and Concrete 24: 329–345. DOI: 10.12989/cac.2019.24.4.329.
- [27] M.-Y. Cheng, J.-S. Chou, A. F. V. Roy, and Y.-W. Wu, (2012) “High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy sup port vector machines inference model" Automation in Construction 28: 106–115. DOI: https://doi.org/10.1016/j.autcon.2012.07.004.
- [28] Z.-H. Duan, S.-C. Kou, and C.-S. Poon, (2013) “Pre diction of compressive strength of recycled aggregate con crete using artificial neural networks" Construction and Building Materials 40: 1200–1206. DOI: 10.1016/j.conbuildmat.2012.04.063.
- [29] A. Jula, E. Sundararajan, and Z. Othman, (2014) “Cloud computing service composition: A systematic lit erature review" Expert systems with applications 41: 3809–3824. DOI: 10.1016/j.eswa.2013.12.017.
- [30] J. Tang, C. Deng, and G.-B. Huang, (2015) “Extreme learning machine for multilayer perceptron" IEEE trans actions on neural networks and learning systems 27: 809–821. DOI: 10.1109/TNNLS.2015.2424995.
- [31] F. Demir, (2008) “Prediction of elastic modulus of normal and high strength concrete by artificial neural networks" Construction and building Materials 22: 1428–1435. DOI: 10.1016/j.conbuildmat.2007.04.004.
- [32] S.Mirjalili, (2016) “SCA: a sine cosine algorithm for solv ing optimization problems" Knowledge-based systems 96: 120–133. DOI: 10.1016/j.knosys.2015.12.022.
- [33] L. Abualigah and A. Diabat, (2021) “Advances in sine cosine algorithm: a comprehensive survey" Artificial Intelligence Review 54: 2567–2608. DOI: 10.1007/s10462-020-09909-3.
- [34] S. M. Mousavi, P. Aminian, A. H. Gandomi, A. H. Alavi, and H. Bolandi, (2012) “A new predictive model for compressive strength of HPC using gene expression programming" Advances in Engineering Software 45: 105–114. DOI: 10.1016/j.advengsoft.2011.09.014.
- [35] A. H.GandomiandA.H.Alavi, (2012) “A new multi gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems" Neural Computing and Applications 21: 171–187. DOI: 10.1007/s00521-011-0734-z.
- [36] P. G. Asteris, A. D. Skentou, A. Bardhan, P. Samui, and K. Pilakoutas, (2021) “Predicting concrete com pressive strength using hybrid ensembling of surrogate machine learning models" Cement and Concrete Re search 145: 106449. DOI: 10.1016/j.cemconres.2021.106449.
- [37] J.-S. Chou and A.-D. Pham, (2013) “Enhanced artificial intelligence for ensemble approach to predicting high per formance concrete compressive strength" Construction and Building Materials 49: 554–563. DOI: 10.1016/j.conbuildmat.2013.08.078.
- [38] N.-H. Nguyen, T. P. Vo, S. Lee, and P. G. Asteris, (2021) “Heuristic algorithm-based semi-empirical formu las for estimating the compressive strength of the nor mal and high performance concrete" Construction and Building Materials 304: 124467. DOI: 10.1016/j.conbuildmat.2021.124467.
- [39] D. V. Dao, H. Adeli, H.-B. Ly, L. M. Le, V. M. Le, T.-T. Le, and B. T. Pham, (2020) “A sensitivity and ro bustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation" Sustainability 12: 830. DOI: 10.3390/su12030830.
- [40] S. Lee, N.-H. Nguyen, A. Karamanli, J. Lee, and T. P. Vo, (2023) “Super learner machine-learning algorithms for compressive strength prediction of high performance concrete" Structural Concrete 24: 2208–2228. DOI: 10.1002/suco.202200424.
- [41] J.-S. Chou, C.-K. Chiu, M. Farfoura, and I. Al Taharwa, (2011) “Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques" Journal of Computing in Civil Engineering 25: 242–253. DOI: 10.1061/(ASCE)CP.1943-5487.0000088.
- [42] M. R. Akbarzadeh, H. Ghafourian, A. Anvari, R. Pourhanasa, and M. L. Nehdi, (2023) “Estimating com pressive strength of concrete using neural electromagnetic f ield optimization" Materials 16: 4200. DOI: 10.3390/ma16114200.