- [1] I.-C. Yeh, (2007) “Modeling slump flow of concrete using second-order regressions and artificial neural networks" Cement andconcrete composites 29: 474–480. DOI: 10.1016/j.cemconcomp.2007.02.001.
- [2] T. Ji, T. Lin, and X. Lin, (2006) “A concrete mix propor tion design algorithm based on artificial neural networks" Cement and Concrete Research 36: 1399–1408. DOI: 10.1016/j.cemconres.2006.01.009.
- [3] M.Esmaeili-Falak and R. S. Benemaran, (2024) “En semble extreme gradient boosting based models to predict the bearing capacity of micropile group" Applied Ocean Research 151: 104149. DOI: 10.1016/j.apor.2024.104149.
- [4] R. S. Benemaran, (2023) “Application of extreme gra dient boosting method for evaluating the properties of episodic failure of borehole breakout" Geoenergy Sci ence and Engineering 226: 211837. DOI: 10.1016/j.geoen.2023.211837.
- [5] A.A.Basma, S. A. Barakat, and S. Al-Oraimi, (1999) “Prediction of cement degree of hydration using artificial neural networks" ACI Materials Journal 96: 167–172. DOI: 10.14359/441.
- [6] M.Esmaeili-Falak and R. S. Benemaran, (2024) “Ap plication of optimization-based regression analysis for eval uation of frost durability of recycled aggregate concrete" Structural Concrete 25: 716–737. DOI: 10.1002/suco. 202300566.
- [7] I.-C. Yeh, (1998) “Modeling of strength of high performance concrete using artificial neural networks" Cement and Concrete research 28: 1797–1808. DOI: 10.1016/S0008-8846(98)00165-3.
- [8] P. L. J. Domone and M. N. Soutsos, (1994) “Approach to the proportioning of high-strength concrete mixes" Concrete international 16: 26–31.
- [9] S. M. Mousavi, A. H. Gandomi, A. H. Alavi, and M. Vesalimahmood, (2010) “Modeling of compressive strength of HPC mixes using a combined algorithm of ge netic programming and orthogonal least squares" Struc tural Engineering and Mechanics, An Int’l Journal 36: 225–241. DOI: 10.12989/sem.2010.36.2.225.
- [10] R. A. Cook, C. Goodspeed, and S. Vanicar. High performance concrete defined for highway structures. 1998.
- [11] A. M.Andrew, (2001) “An introduction to support vec tor machines and other kernel-based learning methods" Kybernetes 30: 103–115. DOI: 10.1108/k.2001.30.1.103.6.
- [12] A. J. Smola and B. Schölkopf, (2004) “A tutorial on support vector regression" Statistics and computing 14: 199–222. DOI: 10.1023/B:STCO.0000035301.49549.88.
- [13] L.Abualigah,A.Diabat,S.Mirjalili, M. A. Elaziz, and A. H. Gandomi, (2021) “The arithmetic optimization algorithm" Computer methods in applied mechanics and engineering 376: 113609. DOI: 10.1016/j.cma.2020.113609.
- [14] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, (2020) “Equilibrium optimizer: A novel opti mization algorithm" Knowledge-based systems 191: 105190. DOI: 10.1016/j.knosys.2019.105190.
- [15] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Noise reduction in speech processing. 2. Springer Science & Business Media, 2009. DOI: 10.1007/978-3-642-00296-0.
- [16] M.S.KhorsheedandA.O.Al-Thubaity, (2013) “Com parative evaluation of text classification techniques using a large diverse Arabic dataset" Language resources and evaluation 47: 513–538. DOI: 10.1007/s10579-013-9221-8.
- [17] N. Leema, H. K. Nehemiah, and A. Kannan, (2016) “Neural network classifier optimization using differential evolution with global information and back propagation al gorithm for clinical datasets" Applied Soft Computing 49: 834–844. DOI: 10.1016/j.asoc.2016.08.001.
- [18] I.-C. Yeh, (1998) “Modeling concrete strength with augment-neuron networks" Journal of Materials in Civil Engineering 10: 263–268. DOI: 10.1061/(ASCE)0899-1561(1998)10:4(263).
- [19] I.-C. Yeh, (2006) “Analysis of strength of concrete using design of experiments and neural networks" Journal of Materials in Civil Engineering 18: 597–604. DOI: 10. 1061/(ASCE)0899-1561(2006)18:4(597).
- [20] I.-C. Yeh, (2003) “Prediction of strength of fly ash and slag concrete by the use of artificial neural networks" J. Chin. Inst. Civil Hydraul. Eng 15: 659–663.
- [21] I.-C. Yeh, (1999) “Design of high-performance concrete mixture using neural networks and nonlinear program ming" Journal of Computing in Civil Engineering 13: 36–42. DOI: 10.1061/(ASCE)0887-3801(1999)13: 1(36).
- [22] S. Lee, N.-H. Nguyen, A. Karamanli, J. Lee, and T. P. Vo, (2023) “Super learner machine-learning algorithms for compressive strength prediction of high performance concrete" Structural Concrete 24: 2208–2228. DOI: 10.1002/suco.202200424.
- [23] D. V. Dao, H. Adeli, H.-B. Ly, L. M. Le, V. M. Le, T.-T. Le, and B. T. Pham, (2020) “A sensitivity and ro bustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation" Sustainability 12: 830. DOI: 10.3390/ su12030830.
- [24] N.-H. Nguyen, T. P. Vo, S. Lee, and P. G. Asteris, (2021) “Heuristic algorithm-based semi-empirical formu las for estimating the compressive strength of the nor mal and high performance concrete" Construction and Building Materials 304: 124467. DOI: 10.1016/j.conbuildmat.2021.124467.
- [25] P. G. Asteris, A. D. Skentou, A. Bardhan, P. Samui, and K. Pilakoutas, (2021) “Predicting concrete com pressive strength using hybrid ensembling of surrogate machine learning models" Cement and Concrete Re search 145: 106449. DOI: 10.1016/j.cemconres.2021.106449.
- [26] S. M. Mousavi, P. Aminian, A. H. Gandomi, A. H. Alavi, and H. Bolandi, (2012) “A new predictive model for compressive strength of HPC using gene expression programming" Advances in Engineering Software 45: 105–114. DOI: 10.1016/j.advengsoft.2011.09.014.
- [27] A. H.GandomiandA.H.Alavi, (2012) “A new multi gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems" Neural Computing and Applications 21: 171–187. DOI: 10.1007/s00521-011-0734-z.
- [28] A. H.GandomiandA.H.Alavi, (2012) “A new multi gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineer ing problems" Neural Computing and Applications 21: 189–201. DOI: 10.1007/s00521-011-0735-y.
- [29] J. Koza, (1992) “On the programming of computers by meansof natural selection" Genetic programming: DOI: 978-0-262-11170-6.
- [30] M.H.Rafiei, W.H.Khushefati, R. Demirboga, and H. Adeli, (2017) “Supervised deep restricted Boltzmann ma chine for estimation of concrete" ACI Materials Journal 114: 237. DOI: 10.14359/51689560.
- [31] P. G.Asteris, P. C. Roussis, and M. G. Douvika, (2017) “Feed-forward neural network prediction of the mechanical properties of sandcrete materials" Sensors 17: 1344. DOI: 10.3390/s17061344.
- [32] M.R. Kaloop, D. Kumar, P. Samui, J. W. Hu, and D. Kim, (2020) “Compressive strength prediction of high performance concrete using gradient tree boosting ma chine" Construction and Building Materials 264: 120198. DOI: 10.1016/j.conbuildmat.2020.120198.
- [33] H. I. Erdal, (2013) “Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction" Engineering Applications of Ar tificial Intelligence 26: 1689–1697. DOI: 10.1016/j.engappai.2013.03.014.
- [34] M.-Y. Cheng, P. M. Firdausi, and D. Prayogo, (2014) “High-performance concrete compressive strength predic tion using Genetic Weighted Pyramid Operation Tree (GWPOT)" Engineering Applications of Artificial Intelligence 29: 104–113. DOI: 10.1016/j.engappai. 2013.11.014.
- [35] J.-S. Chou and A.-D. Pham, (2013) “Enhanced artificial intelligence for ensemble approach to predicting high per formance concrete compressive strength" Construction and Building Materials 49: 554–563. DOI: 10.1016/j.conbuildmat.2013.08.078.
- [36] H.I. Erdal, O. Karakurt, and E. Namli, (2013) “High performance concrete compressive strength forecasting us ing ensemble models based on discrete wavelet transform" Engineering Applications of Artificial Intelligence 26: 1246–1254. DOI: 10.1016/j.engappai.2012.10.014.
- [37] S. Rajasekaran and S. Lavanya, (2007) “Hybridization of genetic algorithm with immune system for optimiza tion problems in structural engineering" Structural and Multidisciplinary Optimization 34: 415–429. DOI: 10.1007/s00158-006-0084-0.
- [38] S. Rajasekaran, D. Suresh, and G. A. V. Pai, (2002) “Application of sequential learning neural networks to civil engineering modeling problems" Engineering with Computers 18: 138–147. DOI: 10.1007/s003660200012.
- [39] B. K. R. Prasad, H. Eskandari, and B. V. V. Reddy, (2009) “Prediction of compressive strength of SCC and HPCwith high volume fly ash using ANN" Construc tion and Building Materials 23: 117–128. DOI: 10.1016/j.conbuildmat.2008.01.014.
- [40] S. Rajasekaran and R. Amalraj, (2002) “Predictions of design parameters in civil engineering problems using SLNN with a single hidden RBF neuron" Computers & structures 80: 2495–2505. DOI: 10.1016/S0045 7949(02)00213-4.
- [41] J. Kasperkiewicz, J. Racz, and A. Dubrawski, (1995) “HPC strength prediction using artificial neural network" Journal of Computing in Civil Engineering 9: 279 284. DOI: 10.1061/(ASCE)0887-3801(1995)9:4(279).
- [42] B. Sadaghat, S. A. Ebrahimi, O. Souri, M. Y. Niar, and M. R. Akbarzadeh, (2024) “Evaluating strength properties of Eco-friendly Seashell-Containing Concrete: Comparative analysis of hybrid and ensemble boosting methods based on environmental effects of seashell usage" Engineering Applications of Artificial Intelligence 133: 108388. DOI: 10.1016/j.engappai.2024.108388.