Ran Liu, Zhiguang Guan, Zhenyuan Zhao, and Qin Sun
School of Construction Machinery, Shandong Jiaotong University, Jinan 250023, China
Received: June 23, 2024 Accepted: September 1, 2024 Publication Date: November 15, 2024
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Excavators are increasingly used across various industries, especially in dangerous environments such as mines, earthquake relief sites, and more. In these hazardous settings, the personal safety of excavator operators cannot be fully guaranteed. However, the implementation of remote control for excavators can effectively mitigate the risks associated with human operation on-site, thereby enhancing workers’ safety and operational efficiency. The excavator remote control system presented in this paper offers significant improvements compared to traditional excavator control systems, including (1) the realization of unlimited-distance remote control through the intervention of an IoT cloud server and (2) the accomplishment of semi-automatic and autonomousexcavator operation via a binocular vision system. Experimental results demonstrate that the cloud-based excavator control system achieves remote control with low latency and high reliability, enabling functions such as walking, steering, and the extension of boom, stick, and bucket.
[1] Wen Leyang, Kim Daeho, Liu Meiyin, and Lee SangHyun, (2023) “3D Excavator Pose Estimation Us ing Projection-Based Pose Optimization for Contact Driven Hazard Monitoring" Journal of Computing in Civil Engineering 37(1): 04022048. DOI: 10.1061/(ASCE)CP.1943-5487.0001060.
[2] J. Zhao, P. Long, L. Wang, L. Qian, F. Lu, X. Song, D. Manocha, and L. Zhang. AES: Autonomous Excava tor System for Real-World and Hazardous Environments. 2020. DOI: 10.48550/ARXIV.2011.04848.
[3] T. Traunecker, M. Niever, and G. N. Basedow. “Ex ploring AI-Driven Business Models: Conceptualiza tion and Expectations in the Machinery Industry”. In: 2020 IEEE International Conference on Industrial En gineering and Engineering Management (IEEM). 2020 IEEE International Conference on Industrial Engi neering and Engineering Management (IEEM). Jour nal Abbreviation: 2020 IEEE International Confer ence on Industrial Engineering and Engineering Management(IEEM).14,2020,567–570. DOI:10.1109/IEEM45057.2020.9309824.
[4] R.Rai, M. K. Tiwari, D. Ivanov, and A. Dolgui, (2021) “Machine learning in manufacturing and industry 4.0 applications" International Journal of Production Re search 59(16): 4773–4778. DOI: 10.1080/00207543.2021.1956675.
[5] R.Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, and F. De Felice, (2020) “Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions" Sustainability 12(2): DOI: 10.3390/su12020492.
[6] J. Lee, B. Kim, D. Sun, C. Han, and Y. Ahn, (2019) “Development of Unmanned Excavator Vehicle System for Performing Dangerous Construction Work" Sensors 19(22): DOI: 10.3390/s19224853.
[7] Xinming Hou, Sen Wang, Dianzhe Zhao, Jiahang Lv, Zijian Jia, Xiangrui Zeng, Xiaona Luan, Zihe Zhou, and Jiawei Zhang. “A remote manipulator control systembasedonaprogrammablelogiccontrollerand internet of things technology”. In: Proc.SPIE. 12636. 25, 2023, 126364B. DOI: 10.1117/12.2675390.
[8] Y. Shen, J. Wang, C. Feng, and Q. Wang, (2024) “Hybrid-driven autonomous excavator trajectory gener ation combining empirical driver skills and optimization" Automation in Construction 165: 105523. DOI: 10.1016/j.autcon.2024.105523.
[9] M.Zou,J. Yu, Y. Lv, B. Lu, W. Chi, and L. Sun, (2023) “ANovelDay-to-Night Obstacle Detection Method for Ex cavators Based on Image Enhancement and Multisensor Fusion" IEEE Sensors Journal 23(10): 10825–10835. DOI: 10.1109/JSEN.2023.3254588.
[10] G. Liu, Q. Wang, T. Wang, B. Li, and X. Xi, (2024) “Vision-based excavator pose estimation for automatic con trol" Automation in Construction 157: 105162. DOI: 10.1016/j.autcon.2023.105162.
[11] Q. H. Le, J. W. Lee, and S. Y. Yang, (2017) “Remote control of excavator using head tracking and flexible mon itoring method" Automation in Construction 81: 99 111. DOI: 10.1016/j.autcon.2017.06.015.
[12] C.-J. Liang, K.M.Lundeen,W.McGee,C.C.Menassa, S. Lee, and V. R. Kamat, (2019) “A vision-based marker less pose estimation system for articulated construction robots" Automation in Construction 104: 80–94. DOI: 10.1016/j.autcon.2019.04.004.
[13] A. A. Yusof, M. N. A. Saadun, H. Sulaiman, and S. A. Sabaruddin. “The development of tele-operated electro-hydraulic actuator (T-EHA) for mini excava tor tele-operation”. In: 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automa tion (ROMA). 2016 2nd IEEE International Sympo sium on Robotics and Manufacturing Automation (ROMA). Journal Abbreviation: 2016 2nd IEEE Inter national Symposium onRobotics and Manufacturing Automation (ROMA). 25, 2016, 1–6. DOI: 10.1109/ROMA.2016.7847800.
[14] C. Frese, A. Zube, P. Woock, T. Emter, N. F. Heide, A. Albrecht, and J. Petereit, (2022) “An autonomous crawler excavator for hazardous environments" Ein au tonomer Raupenbagger für menschenfeindliche Umgebungen 70(10): 859–876. DOI: 10.1515/auto2022-0068.
[15] D. Liu, J. Kim, and Y. Ham, (2023) “Multi-user immer sive environment for excavator teleoperation in construc tion" Automation in Construction 156: 105143. DOI: 10.1016/j.autcon.2023.105143. [16] L. Zhang, J. Zhao, P. Long, L. Wang, L. Qian, F. Lu, X. Song, and D.Manocha,(2021) “Anautonomous excava tor system for material loading tasks" Science Robotics 6(55): eabc3164. DOI: 10.1126/scirobotics.abc3164.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.