Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Hsin-Liang Chen1, Chi-Hsiung Wang2, and Jen-Shiun Chiang This email address is being protected from spambots. You need JavaScript enabled to view it.2

1Department of Electrical Engineering, Chinese Culture University; 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, Taiwan
2Department of Electrical Engineering, Tamkang University; No.151, Yingzhuan Rd. Tamsui, New Taipei City, Taiwan 25137 


 

Received: December 10, 2019
Accepted: May 29, 2020
Publication Date: December 1, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202012_23(4).0008  

ABSTRACT


In this paper, a power minimizing strategy from a system- and circuit-perspective is developed for low-power reconfigurable multi-mode sigma-delta modulators. An experimental low-power modulator is designed for multi-mode systems with second- and fourth-order cascaded architectures. Several criteria are obtained to investigate the stability of the cascaded sigma-delta architecture. The proposed modulator can adapt to different system specifications with switchable stages and double-sampled techniques for better power efficiency. A test modulator chip is demonstrated with 0.13 μm CMOS technology. With the proposed strategy, the simulation results indicate that the designed fourth-order cascaded modulator will dissipate powers of 4.2, 11.3, and 20.2 mW and obtain a figure-of-merit (FoM) of 169, 149, and 157 at a supply voltage of 1.2 V for bandwidths 100kHz, 2 MHz, and 20 MHz, respectively.


Keywords: Cascaded; Reconfigurable; Sigma delta modulator; Multi-mode


REFERENCES


  1. [1] R Bagheri, A Mirzaei, ME Heidari, S Chehrazi, M Lee, M Mikhemar, WK Tang, and AA Abidi. Softwaredefined radio receiver: dream to reality. IEEE Communications Magazine, pages 111–118, 2006.
  2. [2] Hossam Fattah. 5G LTE Narrowband Internet of Things (NB-IoT). 2018.
  3. [3] Andrea Baschirotto, Fabio Campi, Rinaldo Castello, Giovanni Cesura, Giovanni Cesura, Mario Toma, Roberte Guerrieri, Andrea Lodi, Luciano Lavagno, and PieroMalcovati. Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals. IEEE Circuits and Systems Magazine, 6(1):8–28, 2006.
  4. [4] Alonso Morgado, Rocío Del Río, and José M. Dela Rosa. High-efficiency cascade Σ∆ modulators for the next generation software-defined-radio mobile systems. IEEE Transactions on Instrumentation and Measurement, 61(11):2860–2869, 2012.
  5. [5] GGomezandBHaroun. A1.5V2.4/2.9mW79/50dB Sigma Delta modulator for GSM/WCDMA in a 0.13 mu digital process. IEEE Proceedings ISSCC, 2002.
  6. [6] A Dezzani and E Andre. A 1.2-V dual-mode WCDMA/GPRS Sigma Delta modulator. IEEE Proceedings ISSCC, 2003.
  7. [7] J Yu and F Maloberti. A low-power multi-bit sigma delta modulator in 90-nm digital CMOS without DEM. IEEE Proceedings ISSCC, 2005.
  8. [8] Ana Rusu, Delia Rodríguez de Llera González, and Mohammed Ismail. ReconfigurableADCsenablesmart radios for 4G wireless connectivity. IEEE Circuits and Devices Magazine, 22(3):6–11, 2006.
  9. [9] T Christen, T Burger, and Q Huang. A 0.13 um CMOS EDGE/UMTS/WLAN Tri-Mode Delta Sigma ADC with-92dB THD. IEEE Proceedings ISSCC, 2007.
  10. [10] AlonsoMorgado, RocíodelRío, andMJosé. AnAdaptive Σ∆ modulator for multi-standard hand-held wireless devices. In 2007 IEEE Asian Solid-State Circuits Conference, pages 232–235. IEEE, 2007.
  11. [11] Lynn Bos, Gerd Vandersteen, Pieter Rombouts, Arnd Geis, AlonsoMorgado, YvesRolain, GeertVanDerPlas, and Julien Ryckaert. Multirate cascaded discrete-time low-pass ∆Σ modulator for GSM/Bluetooth/UMTS. IEEE Journal of Solid-State Circuits, 45(6):1198–1208, 2010.
  12. [12] L Bettini, T Christen, DK Su, T Burger, and Q Huang. A Reconfigurable DT Modulator for Multi-Standard 2G/3G/4G Wireless Receivers. IEEE Journal of SolidState Circuits, 5(4):525–536, 2015.
  13. [13] Yi Ke, Georges Gielen, and Jan Craninckx. A Design Approach for Power-Optimized Fully Reconfigurable AE A/D Converter for 4G Radios. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3):229–233, 2008.
  14. [14] J Li, R Zhu, T Yi, B Liu, and Z Hong. An energy efficient 5-MHz to 20-MHz, 12-bit reconfigurable continuous-time Σ∆ modulator for 4G-LTE application. Proc. IEEE Int. Sym. Low Power Electron Design, pages 163 – 168, 2013.
  15. [15] Ken Xu, Min Cai, Elias H. Dagher, Bin Xu, Wesley K. Masenten, Hui Ye, Mo Huang, and Xiao Yong He. A 10.2 mW multi-mode continuous-time ∆Σ ADC with 70–87 dB DR and 0.7–10 MHz bandwidth for TDSCDMA and LTE digital receivers. Analog Integrated Circuits and Signal Processing, 89(2):395–410, nov 2016.
  16. [16] J. Gerardo García-Sánchez and José M. De La Rosa. Efficient hybrid continuous-time/discrete-timecascade Σ∆ modulators for wideband applications. Microelectronics Journal, 45(10):1234–1246, 2014.
  17. [17] Tai Haur Kuo, Kuan Dar Chen, and Jhy Rong Chen. Automatic coefficients design for high-order sigmadelta modulators. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(1):6– 15, 1999.
  18. [18] Ovidiu Bajdechi. Systematic Design of Sigma-Delta Analog-to-Digital Converters. In Analog Circuit Design, pages 293–326. Springer US, 2004.
  19. [19] A Marques, V Peluso, MS Steyaert, and WM Sansen. Optimal Parameters for ∆Σ Modulator Topologies. IEEE Transactions on Circuits and Systems II, 45(9):1232– 1241, 1998.
  20. [20] P Malcovati, S Brigati, F Francesconi, F Medeiro, and PCusinato. Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Transactions on Circuits and Systems I, 50(3):352–364, 2003.
  21. [21] Richard Schreier and Gabor C Temes. Understanding Delta-Sigma Data Converters. Technical report, 2005.
  22. [22] J Ruiz-Amaya, JM De La Rosa, FV Fernandez, FMedeiro, RDelRio, BPerez-Verdu, and A Rodriguez Vazquez. High-level synthesis of switched-capacitor, switched-current and continuous-time Sigma Delta modulators using SIMULINK-based time-domain behavioral. IEEE Transactions on Circuits and Systems I, 52(9):1795–1810, 2005.
  23. [23] GeorgeSúarez, ManuelJienez, andFélixO. Fernandez. Behavioral modeling methods for switched-capacitor ∆ modulators. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6):1236–1244, 2007.
  24. [24] Uma Chilakapati and Terri S. Fiez. Effect of switch resistance on the SC integrator settling time. IEEETransactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(6):810–816, 1999.
  25. [25] Hyungil Chae. Double-sampling highpass delta sigma modulator with inherent frequency translation. IEICE Electronics Express, pages 14–20170862, 2017.
  26. [26] Paul J. Hurst and William J. McIntyre. Double sampling in switched-capacitor delta-sigma A/D converters. In Proceedings - IEEE International Symposium on Circuits and Systems, volume 2, pages 902–905, 1990.
  27. [27] TV Burmas, KC Dyer, PJ Husrt, and Lewis SH. A second-order double-sampled delta-sigma modulator using additive-error switching. IEEE Journal ofSelected Topicsin Applied Earth Observations and Remote Sensing, 31(3):284–293, 1996.
  28. [28] CK Thanh, SH Lewis, and PJ Hurst. A second order double-sampled delta-sigma modulator using individual-level averaging. IEEE Journal of Solid-State Circuits, 32(8):1269–1273, 1997.
  29. [29] D Senderowicz, G Nicollini, S Pernici, A Nagari, P Confalonieri, and C Dallavalle. Low-voltage double sampled Sigma Delta converters. IEEE Journal of SolidState Circuits, 32(12):1907–1919, 1997.
  30. [30] Katelijn Vleugels, Shahriar Rabii, and Bruce A. Wooley. A2.5-Vsigma-delta modulator for broadband communications applications. IEEE Journal of Solid-State Circuits, 36(12):1887–1899, 2001.
  31. [31] Min Gyu Kim, Gil Cho Ahn, Pavan Kumar Hanumolu, Sang Hyeon Lee, Sang Ho Kim, Seung Bin You, Jae Whui Kim, Gabor C. Temes, and Un Ku Moon. A 0.9 V 92 dB double-sampled switched-RC delta-sigma audio ADC. In IEEEJournalof Solid-StateCircuits, volume 43, pages 1195–1205, 2008.
  32. [32] P Rombouts, JD Maeyer, and L Weyten. Design of double-sampling Sigma Delta Modulation A/D converters with bilinear integrators. IEEETransactionson Circuits and Systems I, 52(4):715–722, 2005.
  33. [33] HsinLiang Chen and JenShiun Chiang. Alow-power and multi-mode design approach for reconfigurable MASH SDM. In 2009 IEEE International Conference on Integrated Circuit Design and Technology, ICICDT 2009, pages 3–6, 2009.
  34. [34] Thomas Christen and Qiuting Huang. A 0.13 µm CMOS0.1–20MHzbandwidth86–70dBDRmulti-mode DT ∆Σ ADC for IMT-Advanced. In 2010 Proceedings of ESSCIRC, pages 414–417. IEEE, 2010.
  35. [35] Alonso Morgado, Rocío del Río, José M. de la Rosa, RafaelCastro-López,and BelénPérez-Verdú. A0.13µm CMOSadaptivesigma-deltamodulatorfortriple-mode GSM/Bluetooth/UMTS applications. Microelectronics Journal, 41(5):277–290, 2010.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.