- [1] I. Dadon, (2019) “Planning the Second Generation of Smart Cities: Technology to handle the pressures of urbanization" IEEE Electrification Magazine 7(3): 6–15. DOI: 10.1109/MELE.2019.2925729.
- [2] B. Sadaghat, A. Javadzade Khiavi, B. Naeim, E. Khajavi, H. Sadaghat, and A. R. Taghavi Khanghah, (2023) “The utilization of a naıve bayes model for predicting the energy consumption of buildings" Journal of Artificial Intelligence and System Modelling 1(01): 73–91. DOI: 10.22034/JAISM.2023.422292.1003.
- [3] R. Jing, M. Wang, R. Zhang, N. Li, and Y. Zhao, (2017) “A study on energy performance of 30 commercial office buildings in Hong Kong" Energy and Buildings 144: 117–128. DOI: 10.1016/j.enbuild.2017.03.042.
- [4] G. Yang and X. Zhai, (2019) “Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition" Energy 174: 647–663. DOI: 10.1016/j.energy.2019.03.001.
- [5] L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye, Y. Fu, and W. Livingood, (2021) “A review of machine learning in building load prediction" Applied Energy 285: 116452. DOI: 10.1016/j.apenergy.2021.116452.
- [6] X. Zhang, R. Yan, R. Zeng, R. Zhu, X. Kong, Y. He, and H. Li, (2022) “Integrated performance optimization of a biomass-based hybrid hydrogen/thermal energy storage system for building and hydrogen vehicles" Renewable Energy 187: 801–818. DOI: 10.1016/j.renene. 2022.01.050.
- [7] X.-N. Bui, H. Moayedi, and A. S. A. Rashid, (2020) “Developing a predictive method based on optimized M5Rules–GA predicting heating load of an energyefficient building system" Engineering with Computers 36: 931–940. DOI: 10.1007/s00366-019-00739-8.
- [8] X. Li and R. Yao, (2020) “A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour" Energy 212: 118676. DOI: 10.1016/j.energy.2020.118676.
- [9] J. Guo, S. Yun, Y. Meng, N. He, D. Ye, Z. Zhao, L. Jia, and L. Yang, (2023) “Prediction of heating and cooling loads based on light gradient boosting machine algorithms" Building and Environment 236: 110252. DOI: 10.1016/j.buildenv.2023.110252.
- [10] Y. Zhang, Z. Zhou, J. Liu, and J. Yuan, (2022) “Data augmentation for improving heating load prediction of heating substation based on TimeGAN" Energy 260: 124919. DOI: 10.1016/j.energy.2022.124919.
- [11] J. Song, L. Zhang, G. Xue, Y. Ma, S. Gao, and Q. Jiang, (2021) “Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model" Energy and Buildings 243: 110998. DOI: 10.1016/j.enbuild. 2021.110998.
- [12] R. Chaganti, F. Rustam, T. Daghriri, I. d. l. T. Díez, J. L. V. Mazón, C. L. Rodríguez, and I. Ashraf, (2022) “Building heating and cooling load prediction using ensemble machine learning model" Sensors 22(19): 7692. DOI: 10.3390/s22197692.
- [13] Y. Wei, X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu, M. Han, and X. Zhao, (2018) “A review of data-driven approaches for prediction and classification of building energy consumption" Renewable and Sustainable Energy Reviews 82: 1027–1047. DOI: 10.1016/j.rser.2017.09.108.
- [14] M. Rana, S. Sethuvenkatraman, and M. Goldsworthy, (2022) “A data-driven approach based on quantile regression forest to forecast cooling load for commercial buildings" Sustainable Cities and Society 76: 103511. DOI: 10.1016/j.scs.2021.103511.
- [15] S. Shamshirband, D. Petkovi´c, R. Enayatifar, A. H. Abdullah, D. Markovi´c, M. Lee, and R. Ahmad, (2015) “Heat load prediction in district heating systems with adaptive neuro-fuzzy method" Renewable and Sustainable Energy Reviews 48: 760–767. DOI: 10.1016/j.rser. 2015.04.020.
- [16] Q. Zhang, Z. Tian, Z. Ma, G. Li, Y. Lu, and J. Niu, (2020) “Development of the heating load prediction model for the residential building of district heating based on model calibration" Energy 205: 117949. DOI: 10.1016/j.energy.2020.117949.
- [17] Y. Feng, Q. Duan, X. Chen, S. S. Yakkali, and J. Wang, (2021) “Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods" Applied energy 291: 116814. DOI: 10.1016/j.apenergy.2021.116814.
- [18] G. Xue, C. Qi, H. Li, X. Kong, and J. Song, (2020) “Heating load prediction based on attention long short term memory: A case study of Xingtai" Energy 203: 117846. DOI: 10.1016/j.energy.2020.117846.
- [19] J. Cai, W. Yu, B. Li, R. Yao, T. Zhang, M. Guo, H. Wang, Z. Cheng, J. Xiong, Q. Meng, et al., (2019) “Particle removal efficiency of a household portable air cleaner in real-world residences: A single-blind cross-over field study" Energy and Buildings 203: 109464. DOI: 10.1016/j.enbuild.2019.109464.
- [20] X. Zhou, W. Lin, R. Kumar, P. Cui, and Z. Ma, (2022) “A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption" Applied Energy 306: 118078. DOI: 10.1016/j.apenergy.2021.118078.
- [21] G. Baasch, P. Westermann, and R. Evins, (2021) “Identifying whole-building heat loss coefficient from heterogeneous sensor data: An empirical survey of gray and black box approaches" Energy and Buildings 241: 110889. DOI: 10.1016/j.enbuild.2021.110889.
- [22] H. Liu, C. Chen, Z. Guo, Y. Xia, X. Yu, and S. Li, (2021) “Overall grouting compactness detection of bridge prestressed bellows based on RF feature selection and the GA-SVM model" Construction and Building Materials 301: 124323. DOI: 10.1016/j.conbuildmat.2021. 124323.
- [23] Y. Liu, H. Chen, L. Zhang, and Z. Feng, (2021) “Enhancing building energy efficiency using a random forest model: A hybrid prediction approach" Energy Reports 7: 5003–5012. DOI: 10.1016/j.egyr.2021.07.135.
- [24] D. Tien Bui, H. Moayedi, D. Anastasios, and L. Kok Foong, (2019) “Predicting heating and cooling loads in energy-efficient buildings using two hybrid intelligent models" Applied Sciences 9(17): 3543. DOI: 10.3390/app9173543.
- [25] V. V. Mokeev. “Prediction of heating load and cooling load of buildings using neural network”. In: 2019 International Ural Conference on Electrical Power Engineering (UralCon). IEEE. 2019, 417–421. DOI: 10.1109/URALCON.2019.8877655.
- [26] P. Dai, P. Zhou, Y. Liang, et al., (2019) “Adaptive nonlinear predictive control based on multi output least squares support vector regression modeling and its application" Control theory and application 36(1): 43–52.
- [27] P. Dai, P. Zhou, Y. Liang, et al., (2019) “Adaptive nonlinear predictive control based on multi output least squares support vector regression modeling and its application" Control theory and application 36(1): 43–52.
- [28] G. G. Tejani, B. Sadaghat, and S. Kumar, (2023) “Predict the maximum dry density of soil based on individual and hybrid methods of machine learning" Advances in engineering and intelligence systems 2(03): 98–109. DOI: 10.22034/AEIS.2023.414188.1129.
- [29] T.-L. Le, D.-N. Truong, and D. S. Nguyen. “Nature inspired based optimize combination of time series and machine learning model for predict energy consumption of a residence”. In: AIP Conference Proceedings. 2560. 1. AIP Publishing. 2023. DOI: 10.1063/5.0124782.
- [30] A. Tsanas and A. Xifara, (2012) “Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools" Energy and buildings 49: 560–567. DOI: 10.1016/j.enbuild.2012.03.003.
- [31] V. N. Vapnik, (1998) “The nature of statistical learning":
- [32] M. Ayubi Rad and M. S. Ayubirad, (2017) “Comparison of artificial neural network and coupled simulated annealing based least square support vector regression models for prediction of compressive strength of highperformance concrete" Scientia Iranica 24(2): 487–496.
- [33] Q. B. Pham, T.-C. Yang, C.-M. Kuo, H.-W. Tseng, and P.-S. Yu, (2019) “Combing random forest and least square support vector regression for improving extreme rainfall downscaling" Water 11(3): 451. DOI: 10.3390/w11030451.
- [34] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector classification. 2003.
- [35] B. G. Aiyer, D. Kim, N. Karingattikkal, P. Samui, and P. R. Rao, (2014) “Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine" KSCE Journal of Civil Engineering 18: 1753–1758. DOI: 10.1007/s12205-014-0524-0.
- [36] M. K. Habib and A. K. Cherri, (1998) “Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division" Optics & Laser Technology 30(8): 515–525. DOI: 10.1016/S0030-3992(99)00004-3.
- [37] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, (2021) “Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems" Applied intelligence 51: 1531–1551. DOI: 10.1007/s10489-020-01893-z.
- [38] O. N. Oyelade, A. E.-S. Ezugwu, T. I. Mohamed, and L. Abualigah, (2022) “Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm" IEEE Access 10: 16150–16177. DOI: 10.1109/ACCESS.2022.3147821.
- [39] O. N. Oyelade and A. E. Ezugwu, (2021) “Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease" arXiv preprint arXiv:2106.01416: DOI: 10.48550/arXiv.2106.01416.
- [40] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10(11): 3829. DOI: 10.3390/app10113829.
- [41] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253–1264. DOI: 10.1007/s12652-019-01317-y.
- [42] M. Gong, Y. Bai, J. Qin, J. Wang, P. Yang, and S. Wang, (2020) “Gradient boosting machine for predicting return temperature of district heating system: A case study for residential buildings in Tianjin" Journal of Building Engineering 27: 100950. DOI: 10.1016/j.jobe.2019. 100950.
- [43] S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, (2023) “Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms" Energy 282: 128446. DOI: 10.1016/j.energy.2023.128446.