Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Trong Hieu DoThis email address is being protected from spambots. You need JavaScript enabled to view it., Minh Duc Nguyen, and Minh Duc Duong

Hanoi University of Science and Technology


 

 

Received: May 22, 2024
Accepted: September 16, 2024
Publication Date: November 15, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202508_28(8).0010  


Overhead cranes are widely utilized in various industries and for transporting goods. However, the vibrations generated during operation can significantly impact the safety and efficiency of crane work. This issue becomes more critical when dealing with large-sized loads that cannot be overlooked. In such cases, the crane exhibits a double pendulum-like behaviour, and the load vibrations become multi-frequency. This paper proposes an Active Disturbance Rejection Control (ADRC) controller to control the crane’s position combined with the Equal Shaping Time and Magnitude (ETM) input shaping technique to suppress load swinging during lifting operations. Simulations and experiments were performed to confirm the validity of the proposed method.


Keywords: Double-Pendulum Crane; ADRC; Input Shaping; Impulse Vector; Vibration Suppression


  1. [1] L. Ramli, Z. Mohamed, A. M. Abdullahi, H. Jaafar, and I. M. Lazim, (2017) “Control strategies for crane systems: A comprehensive review" Mechanical Systems and Signal Processing 95: 1–23. DOI: https://doi.org/10.1016/j.ymssp.2017.03.015
  2. [2] H. I. Jaafar, Z. Mohamed, N. A. M. Subha, A. R. Husain, F. S. Ismail, L. Ramli, M. O. Tokhi, and M. A. Shamsudin, (2019) “Efficient control of a non linear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID con troller" Journal of Vibration and Control 25(4): 907–921. DOI: 10.1177/1077546318804319. eprint: https://doi.org/10.1177/1077546318804319.
  3. [3] N.Sun, T. Yang, Y. Fang, Y. Wu, and H. Chen, (2019) “Transportation Control of Double-Pendulum Cranes With a Nonlinear Quasi-PID Scheme: Design and Experi ments" IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(7): 1408–1418.
  4. [4] N.Sun, Y. Wu, Y. Fang, and H. Chen, (2018) “Nonlin ear Antiswing Control for Crane Systems With Double Pendulum Swing Effects and Uncertain Parameters: De sign and Experiments" IEEE Transactions on Automa tion Science and Engineering 15(3): 1413–1422. DOI: 10.1109/TASE.2017.2723539.
  5. [5] B. Lu, Y. Fang, and N. Sun, (2019) “Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering" Automatica 101: 241–251. DOI: https://doi.org/10.1016/j.automatica.2018.12.009.
  6. [6] L. Yang and H.Ouyang, (2022) “Precision-positioning adaptive controller for swing elimination in three dimensional overhead cranes with distributed mass beams" ISA Transaction 127: 449–460. DOI: 10.1016/j.isatra.2021.08.035.
  7. [7] Q.Wu,X.Wang,L.Hua,andM.Xia,(2020)“Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams" Me chanical Systems and Signal Processing: DOI: https://doi.org/10.1016/j.ymssp.2020.106968
  8. [8] Q.Wu,X.Wang,L.Hua,andM.Xia,(2021)“Improved time optimal anti-swing control system based on low-pass f ilter for double pendulum crane system with distributed mass beam" Mechanical Systems and Signal Process ing 151: 107444. DOI: https://doi.org/10.1016/j.ymssp.2020.107444.
  9. [9] M. Zhang, Y. Zhang, and X. A. Cheng, (2019) “En hanced Coupling PD with Sliding Mode Control Method for Underactuated Double-pendulum Overhead Crane Systems" Int. J. Control Autom. Syst 17: 1579–1488. DOI: 10.1007\s12555-018-0646-0.
  10. [10] H. Ouyang, J. Hu, G. Zhang, L. Mei, and X. Deng, (2019) “Sliding-Mode-Based Trajectory Tracking and Load Sway Suppression Control for Double-Pendulum Overhead Cranes" IEEE Access 7: 4371–4379. DOI: 10. 1109/ACCESS.2018.2888563.
  11. [11] T. Wang, N. Tan, X. Zhang, G. Li, S. Su, J. Zhou, J. Qiu, Z. Wu, Y. Zhai, R. Donida Labati, V. Piuri, and F. Scotti, (2021) “A Time-Varying Sliding Mode Control Method for Distributed-Mass Double Pendulum Bridge Crane With Variable Parameters" IEEE Access 9: 75981 75992. DOI: 10.1109/ACCESS.2021.3079303.
  12. [12] Q.Wu,X.Wang,L.Hua,andM.Xia,(2021)“Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances" Mechanical Systems and Signal Processing 158: 107756. DOI: https://doi.org/10.1016/j.ymssp.2021.107756
  13. [13] D.Qian, S. Tong, and S. Lee, (2016) “Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes" Automation in Construction 65: 133–143. DOI: 10.1016/j.autcon.2015.12.014.
  14. [14] Z.SunandH.Ouyang,(2022)“Adaptivefuzzytracking control for vibration suppression of tower crane with dis tributed payload mass" Automation in Construction 142: 104521. DOI: https://doi.org/10.1016/j.autcon.2022.104521
  15. [15] Q. Wu, N. Sun, T. Yang, and Y. Fang, (2024) “Deep Reinforcement Learning-Based Control for Asynchronous Motor-Actuated Triple Pendulum Crane Systems With Distributed Mass Payloads" IEEE Transactions on In dustrial Electronics 71(2): 1853–1862. DOI: 10.1109/TIE.2023.3262891.
  16. [16] M.Kenison and W. Singhose. “Input shaper design for double-pendulum planar gantry cranes”. In: Pro ceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328). 1. 1999, 539 544 vol. 1. DOI: 10.1109/CCA.1999.806702.
  17. [17] W. E. Singhose, J. Lawrence, K. L. Sorensen, and K. Dooroo, (2006) “Applications and educational uses of crane oscillation control" FME Transactions 34: 175–183.
  18. [18] K. Chen Chih Peng, W. Singhose, and S. S. Gürleyük. “Initial investigations of hand-motion crane control with double-pendulum payloads”. In: 2012 American Control Conference (ACC). 2012, 6270–6275. DOI: 10.1109/ACC.2012.6315260.
  19. [19] K. A. Alhazza and Z. N. Masoud, (2016) “Waveform commandshaping control of multimode systems" Journal of Sound and Vibration 363: 126–140. DOI: https://doi.org/10.1016/j.jsv.2015.11.010
  20. [20] Z. N. Masoud and K. A. Alhazza, (2017) “A smooth multimode waveform command shaping control with se lectable command length" Journal of Sound and Vi bration 397: 1–16. DOI: https://doi.org/10.1016/j.jsv.2017.02.049
  21. [21] S. F. ur Rehman, Z. Mohamed, A. Husain, L. Ramli, M.Abbasi, W. Anjum, and M.Shaheed, (2023) “Adap tive input shaper for payload swing control of a 5-DOF tower crane with parameter uncertainties and obstacle avoidance" Automation in Construction 154: 104963. DOI: https://doi.org/10.1016/j.autcon.2023.104963.
  22. [22] X. Xie, J. Huang, and Z. Liang, (2013) “Vibration re duction for flexible systems by command smoothing" Me chanical Systems and Signal Processing 39(1): 461 470. DOI: https://doi.org/10.1016/j.ymssp.2013.02.021
  23. [23] R. Tang and J. Huang, (2016) “Control of bridge cranes with distributed-mass payloads under windy conditions" Mechanical Systems and Signal Processing 72-73: 409–419. DOI: https://doi.org/10.1016/j.ymssp.2015.11.002
  24. [24] Y. Jiahui and H. Jie, (2023) “Control of Beam-Pendulum Dynamics in a Tower Crane With a Slender Jib Transport ing a Distributed-Mass Load" IEEE Transactions on Industrial Electronics 70(1): 888–897. DOI: 10.1109/TIE.2022.3148741.
  25. [25] X. Miao, L. Yang, and H. Ouyang, (2023) “Artificial neural-network-based optimal Smoother design for oscilla tion suppression control of underactuated overhead cranes with distributed mass beams" Mechanical Systems and Signal Processing 200: 110497. DOI: https://doi.org/10.1016/j.ymssp.2023.110497.
  26. [26] D. Minh Duc, N. Van Minh, D. Quy Thinh, and D. Trong Hieu, (2023) “Reference response based time varying vibration suppression control for flexible dynamic systems" Journal of Engineering Science and Tech nology 18(1): 604–623.
  27. [27] D. Gruyter. Anti-sway Control for Cranes: Design and Implementation Using MATLAB. De Gruyter, 2017.
  28. [28] W.Singhose, D. Kim, and M. Kenison, (2008) “Input Shaping Control of Double-Pendulum Bridge Crane Os cillations" J. Dyn. Sys., Meas., Control 130(3): DOI: doi:10.1115/1.2907363.
  29. [29] J. Han, (2009) “From PID to Active Disturbance Rejec tion Control" IEEE Transactions on Industrial Elec tronics 56(3): 900–906. DOI: 10 . 1109 / TIE . 2008.2011621.
  30. [30] G. Herbst, (2013) “A Simulative Study on Active Dis turbance Rejection Control (ADRC) as a Control Tool for Practitioners" Electronics 2(3): 246–279. DOI: 10.3390/electronics2030246.
  31. [31] T. M. Chien, D. T. Hieu, and D. Q. Thinh, (2022) “De velopment of a Rehabilitation Robot: Modeling and Trajec tory Tracking Control" ASEAN Engineering Journal 12(4): 121–129. DOI: 10.11113/aej.v12.17196.
  32. [32] N. C. Singer and W. P. Seering, (1990) “Preshaping command inputs to reduce system vibration":
  33. [33] C. G. Kang, (2019) “Impulse Vectors for Input-Shaping Control: A Mathematical Tool to Design and Analyze In put Shapers" IEEE Control Systems Magazine 39(4): 40–55. DOI: 10.1109/MCS.2019.2913610.
  34. [34] M. I. Solihin, Wahyudi, and A. Legowo, (2010) “Fuzzy-tuned PID Anti-swing Control of Automatic Gantry Crane" Journal of Vibration and Control 16(1): 127–145. DOI: 10 . 1177 / 1077546309103421. eprint: https://doi.org/10.1177/1077546309103421.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.